/[MITgcm]/manual/s_algorithm/text/tracer.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/tracer.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.8 by cnh, Thu Oct 25 18:36:53 2001 UTC revision 1.27 by heimbach, Wed Oct 26 17:30:23 2016 UTC
# Line 3  Line 3 
3    
4  \section{Tracer equations}  \section{Tracer equations}
5  \label{sec:tracer_equations}  \label{sec:tracer_equations}
6    \begin{rawhtml}
7    <!-- CMIREDIR:tracer_equations: -->
8    \end{rawhtml}
9    
10  The basic discretization used for the tracer equations is the second  The basic discretization used for the tracer equations is the second
11  order piece-wise constant finite volume form of the forced  order piece-wise constant finite volume form of the forced
# Line 16  described here. Line 19  described here.
19    
20  \subsection{Time-stepping of tracers: ABII}  \subsection{Time-stepping of tracers: ABII}
21  \label{sec:tracer_equations_abII}  \label{sec:tracer_equations_abII}
22    \begin{rawhtml}
23    <!-- CMIREDIR:tracer_equations_abII: -->
24    \end{rawhtml}
25    
26  The default advection scheme is the centered second order method which  The default advection scheme is the centered second order method which
27  requires a second order or quasi-second order time-stepping scheme to  requires a second order or quasi-second order time-stepping scheme to
# Line 43  only affects the surface layer since the Line 49  only affects the surface layer since the
49  everywhere else. This term is therefore referred to as the surface  everywhere else. This term is therefore referred to as the surface
50  correction term. Global conservation is not possible using the  correction term. Global conservation is not possible using the
51  flux-form (as here) and a linearized free-surface  flux-form (as here) and a linearized free-surface
52  (\cite{Griffies00,Campin02}).  (\cite{griffies:00,campin:02}).
53    
54  The continuity equation can be recovered by setting  The continuity equation can be recovered by setting
55  $G_{diff}=G_{forc}=0$ and $\tau=1$.  $G_{diff}=G_{forc}=0$ and $\tau=1$.
# Line 123  the forward method. Line 129  the forward method.
129    
130    
131  \section{Linear advection schemes}  \section{Linear advection schemes}
132    \label{sec:tracer-advection}
133    \begin{rawhtml}
134    <!-- CMIREDIR:linear_advection_schemes: -->
135    \end{rawhtml}
136    
137  \begin{figure}  \begin{figure}
138  \resizebox{5.5in}{!}{\includegraphics{part2/advect-1d-lo.eps}}  \resizebox{5.5in}{!}{\includegraphics{s_algorithm/figs/advect-1d-lo.eps}}
139  \caption{  \caption{
140  Comparison of 1-D advection schemes. Courant number is 0.05 with 60  Comparison of 1-D advection schemes. Courant number is 0.05 with 60
141  points and solutions are shown for T=1 (one complete period).  points and solutions are shown for T=1 (one complete period).
# Line 143  $\mu=c/(1-c)$. Line 153  $\mu=c/(1-c)$.
153  \end{figure}  \end{figure}
154    
155  \begin{figure}  \begin{figure}
156  \resizebox{5.5in}{!}{\includegraphics{part2/advect-1d-hi.eps}}  \resizebox{5.5in}{!}{\includegraphics{s_algorithm/figs/advect-1d-hi.eps}}
157  \caption{  \caption{
158  Comparison of 1-D advection schemes. Courant number is 0.89 with 60  Comparison of 1-D advection schemes. Courant number is 0.89 with 60
159  points and solutions are shown for T=1 (one complete period).  points and solutions are shown for T=1 (one complete period).
# Line 200  W & = & {\cal A}_c w Line 210  W & = & {\cal A}_c w
210    
211  For non-divergent flow, this discretization can be shown to conserve  For non-divergent flow, this discretization can be shown to conserve
212  the tracer both locally and globally and to globally conserve tracer  the tracer both locally and globally and to globally conserve tracer
213  variance, $\tau^2$. The proof is given in \cite{Adcroft95,Adcroft97}.  variance, $\tau^2$. The proof is given in \cite{adcroft:95,adcroft:97}.
214    
215  \fbox{ \begin{minipage}{4.75in}  \fbox{ \begin{minipage}{4.75in}
216  {\em S/R GAD\_C2\_ADV\_X} ({\em gad\_c2\_adv\_x.F})  {\em S/R GAD\_C2\_ADV\_X} ({\em gad\_c2\_adv\_x.F})
# Line 349  if the limiter is set to zero. Line 359  if the limiter is set to zero.
359    
360    
361  \section{Non-linear advection schemes}  \section{Non-linear advection schemes}
362    \label{sec:non-linear_advection_schemes}
363    \begin{rawhtml}
364    <!-- CMIREDIR:non-linear_advection_schemes: -->
365    \end{rawhtml}
366    
367  Non-linear advection schemes invoke non-linear interpolation and are  Non-linear advection schemes invoke non-linear interpolation and are
368  widely used in computational fluid dynamics (non-linear does not refer  widely used in computational fluid dynamics (non-linear does not refer
# Line 387  r = \frac{ \tau_{i-1} - \tau_{i-2} }{ \t Line 401  r = \frac{ \tau_{i-1} - \tau_{i-2} }{ \t
401  r = \frac{ \tau_{i+1} - \tau_{i} }{ \tau_{i} - \tau_{i-1} } & \forall & u < 0  r = \frac{ \tau_{i+1} - \tau_{i} }{ \tau_{i} - \tau_{i-1} } & \forall & u < 0
402  \end{eqnarray}  \end{eqnarray}
403  as it's argument. There are many choices of limiter function but we  as it's argument. There are many choices of limiter function but we
404  only provide the Superbee limiter \cite{Roe85}:  only provide the Superbee limiter \cite{roe:85}:
405  \begin{equation}  \begin{equation}
406  \psi(r) = \max[0,\min[1,2r],\min[2,r]]  \psi(r) = \max[0,\min[1,2r],\min[2,r]]
407  \end{equation}  \end{equation}
# Line 449  to centered second order advection in th Line 463  to centered second order advection in th
463    
464  The DST3 method described above must be used in a forward-in-time  The DST3 method described above must be used in a forward-in-time
465  manner and is stable for $0 \le |c| \le 1$. Although the scheme  manner and is stable for $0 \le |c| \le 1$. Although the scheme
466  appears to be forward-in-time, it is in fact second order in time and  appears to be forward-in-time, it is in fact third order in time and
467  the accuracy increases with the Courant number! For low Courant  the accuracy increases with the Courant number! For low Courant
468  number, DST3 produces very similar results (indistinguishable in  number, DST3 produces very similar results (indistinguishable in
469  Fig.~\ref{fig:advect-1d-lo}) to the linear third order method but for  Fig.~\ref{fig:advect-1d-lo}) to the linear third order method but for
# Line 536  $\tau$: {\bf tracer} (argument) Line 550  $\tau$: {\bf tracer} (argument)
550  \subsection{Multi-dimensional advection}  \subsection{Multi-dimensional advection}
551    
552  \begin{figure}  \begin{figure}
553  \resizebox{5.5in}{!}{\includegraphics{part2/advect-2d-lo-diag.eps}}  \resizebox{5.5in}{!}{\includegraphics{s_algorithm/figs/advect-2d-lo-diag.eps}}
554  \caption{  \caption{
555  Comparison of advection schemes in two dimensions; diagonal advection  Comparison of advection schemes in two dimensions; diagonal advection
556  of a resolved Gaussian feature. Courant number is 0.01 with  of a resolved Gaussian feature. Courant number is 0.01 with
# Line 557  lines). Line 571  lines).
571  \end{figure}  \end{figure}
572    
573  \begin{figure}  \begin{figure}
574  \resizebox{5.5in}{!}{\includegraphics{part2/advect-2d-mid-diag.eps}}  \resizebox{5.5in}{!}{\includegraphics{s_algorithm/figs/advect-2d-mid-diag.eps}}
575  \caption{  \caption{
576  Comparison of advection schemes in two dimensions; diagonal advection  Comparison of advection schemes in two dimensions; diagonal advection
577  of a resolved Gaussian feature. Courant number is 0.27 with  of a resolved Gaussian feature. Courant number is 0.27 with
# Line 578  lines). Line 592  lines).
592  \end{figure}  \end{figure}
593    
594  \begin{figure}  \begin{figure}
595  \resizebox{5.5in}{!}{\includegraphics{part2/advect-2d-hi-diag.eps}}  \resizebox{5.5in}{!}{\includegraphics{s_algorithm/figs/advect-2d-hi-diag.eps}}
596  \caption{  \caption{
597  Comparison of advection schemes in two dimensions; diagonal advection  Comparison of advection schemes in two dimensions; diagonal advection
598  of a resolved Gaussian feature. Courant number is 0.47 with  of a resolved Gaussian feature. Courant number is 0.47 with
# Line 614  as if in one dimension: Line 628  as if in one dimension:
628  \tau^{n+1/3} & = & \tau^{n}  \tau^{n+1/3} & = & \tau^{n}
629  - \Delta t \left( \frac{1}{\Delta x} \delta_i F^x(\tau^{n})  - \Delta t \left( \frac{1}{\Delta x} \delta_i F^x(\tau^{n})
630             + \tau^{n} \frac{1}{\Delta x} \delta_i u \right) \\             + \tau^{n} \frac{1}{\Delta x} \delta_i u \right) \\
631  \tau^{n+2/3} & = & \tau^{n}  \tau^{n+2/3} & = & \tau^{n+1/3}
632  - \Delta t \left( \frac{1}{\Delta y} \delta_j F^y(\tau^{n+1/3})  - \Delta t \left( \frac{1}{\Delta y} \delta_j F^y(\tau^{n+1/3})
633             + \tau^{n} \frac{1}{\Delta y} \delta_i v \right) \\             + \tau^{n} \frac{1}{\Delta y} \delta_i v \right) \\
634  \tau^{n+3/3} & = & \tau^{n}  \tau^{n+3/3} & = & \tau^{n+2/3}
635  - \Delta t \left( \frac{1}{\Delta r} \delta_k F^x(\tau^{n+2/3})  - \Delta t \left( \frac{1}{\Delta r} \delta_k F^x(\tau^{n+2/3})
636             + \tau^{n} \frac{1}{\Delta r} \delta_i w \right)             + \tau^{n} \frac{1}{\Delta r} \delta_i w \right)
637  \end{eqnarray}  \end{eqnarray}
# Line 651  $W$: {\bf rTrans} (local) Line 665  $W$: {\bf rTrans} (local)
665    
666  \end{minipage} }  \end{minipage} }
667    
668    \begin{figure}
669    \resizebox{3.5in}{!}{\includegraphics{s_algorithm/figs/multiDim_CS.eps}}
670    \caption{Muti-dimensional advection time-stepping with Cubed-Sphere topology
671    \label{fig:advect-multidim_cs}
672    }
673    \end{figure}
674    
675  \section{Comparison of advection schemes}  \section{Comparison of advection schemes}
676    \label{sec:tracer_advection_schemes}
677    \begin{rawhtml}
678    <!-- CMIREDIR:comparison_of_advection_schemes: -->
679    \end{rawhtml}
680    
681    \begin{table}[htb]
682    \centering
683    {\small
684     \begin{tabular}[htb]{|l|c|c|c|c|l|}
685       \hline
686       Advection Scheme & code & use  & use Multi- & Stencil & comments \\
687                        &      & A.B. & dimension & (1 dim) & \\
688       \hline \hline
689       $1^{rst}$order upwind  & 1 &  No & Yes & 3 pts & linear/$\tau$, non-linear/v\\
690       \hline
691       centered $2^{nd}$order & 2 &  Yes & No & 3 pts & linear \\
692       \hline
693       $3^{rd}$order upwind   & 3 &  Yes & No & 5 pts & linear/$\tau$\\
694       \hline
695       centered $4^{th}$order & 4 &  Yes & No & 5 pts & linear \\
696       \hline \hline
697       $2^{nd}$order DST (Lax-Wendroff)  & 20 &
698                             No & Yes & 3 pts & linear/$\tau$, non-linear/v\\
699       \hline
700       $3^{rd}$order DST & 30 &  No & Yes & 5 pts & linear/$\tau$, non-linear/v\\
701       \hline
702       $2^{nd}$order-moment Prather & 80 & No & Yes & ~ & ~ \\
703       \hline \hline
704       $2^{nd}$order Flux Limiters & 77 &  No & Yes & 5 pts & non-linear \\
705       \hline
706       $3^{nd}$order DST Flux limiter & 33 &  No & Yes & 5 pts & non-linear \\
707       \hline
708       $2^{nd}$order-moment Prather w. limiter & 81 & No & Yes & ~ & ~ \\
709       \hline
710       piecewise parabolic w. ``null'' limiter & 40 & No & Yes & ~ & ~ \\
711       \hline
712       piecewise parabolic w. ``mono'' limiter & 41 & No & Yes & ~ & ~ \\
713       \hline
714       piecewise quartic w. ``null'' limiter & 50 & No & Yes & ~ & ~ \\
715       \hline
716       piecewise quartic w. ``mono'' limiter & 51 & No & Yes & ~ & ~ \\
717       \hline
718       piecewise quartic w. ``weno'' limiter & 52 & No & Yes & ~ & ~ \\
719       \hline
720       $7^{nd}$order one-step method & 7 & No & Yes & ~ & ~ \\
721       with Monotonicity Preserving Limiter & ~ & ~ & ~ & ~ & ~ \\
722       \hline
723      
724     \end{tabular}
725     }
726     \caption{Summary of the different advection schemes available in MITgcm.
727              ``A.B.'' stands for Adams-Bashforth and ``DST'' for direct space time.
728              The code corresponds to the number used to select the corresponding
729              advection scheme in the parameter file (e.g., {\bf tempAdvScheme}=3 in
730              file {\em data} selects the $3^{rd}$ order upwind advection scheme
731              for temperature).
732       }
733     \label{tab:advectionShemes_summary}
734    \end{table}
735    
736    
737  Figs.~\ref{fig:advect-2d-lo-diag}, \ref{fig:advect-2d-mid-diag} and  Figs.~\ref{fig:advect-2d-lo-diag}, \ref{fig:advect-2d-mid-diag} and
738  \ref{fig:advect-2d-hi-diag} show solutions to a simple diagonal  \ref{fig:advect-2d-hi-diag} show solutions to a simple diagonal
# Line 675  Figs.~\ref{fig:advect-1d-lo} and \ref{fi Line 755  Figs.~\ref{fig:advect-1d-lo} and \ref{fi
755  phenomenon.  phenomenon.
756    
757  Finally, the bottom left and right panels use the same advection  Finally, the bottom left and right panels use the same advection
758  scheme but the right does not use the mutli-dimensional method. At low  scheme but the right does not use the multi-dimensional method. At low
759  Courant number this appears to not matter but for moderate Courant  Courant number this appears to not matter but for moderate Courant
760  number severe distortion of the feature is apparent. Moreover, the  number severe distortion of the feature is apparent. Moreover, the
761  stability of the multi-dimensional scheme is determined by the maximum  stability of the multi-dimensional scheme is determined by the maximum
# Line 704  flux limited scheme is almost essential. Line 784  flux limited scheme is almost essential.
784  non-linear schemes have the most stability (up to Courant number 1).  non-linear schemes have the most stability (up to Courant number 1).
785  \item If you need to know how much diffusion/dissipation has occurred you  \item If you need to know how much diffusion/dissipation has occurred you
786  will have a lot of trouble figuring it out with a non-linear method.  will have a lot of trouble figuring it out with a non-linear method.
787  \item The presence of false extrema is unphysical and this alone is the  \item The presence of false extrema is non-physical and this alone is the
788  strongest argument for using a positive scheme.  strongest argument for using a positive scheme.
789  \end{itemize}  \end{itemize}

Legend:
Removed from v.1.8  
changed lines
  Added in v.1.27

  ViewVC Help
Powered by ViewVC 1.1.22