627 |
\tau^{n+1/3} & = & \tau^{n} |
\tau^{n+1/3} & = & \tau^{n} |
628 |
- \Delta t \left( \frac{1}{\Delta x} \delta_i F^x(\tau^{n}) |
- \Delta t \left( \frac{1}{\Delta x} \delta_i F^x(\tau^{n}) |
629 |
+ \tau^{n} \frac{1}{\Delta x} \delta_i u \right) \\ |
+ \tau^{n} \frac{1}{\Delta x} \delta_i u \right) \\ |
630 |
\tau^{n+2/3} & = & \tau^{n} |
\tau^{n+2/3} & = & \tau^{n+1/3} |
631 |
- \Delta t \left( \frac{1}{\Delta y} \delta_j F^y(\tau^{n+1/3}) |
- \Delta t \left( \frac{1}{\Delta y} \delta_j F^y(\tau^{n+1/3}) |
632 |
+ \tau^{n} \frac{1}{\Delta y} \delta_i v \right) \\ |
+ \tau^{n} \frac{1}{\Delta y} \delta_i v \right) \\ |
633 |
\tau^{n+3/3} & = & \tau^{n} |
\tau^{n+3/3} & = & \tau^{n+2/3} |
634 |
- \Delta t \left( \frac{1}{\Delta r} \delta_k F^x(\tau^{n+2/3}) |
- \Delta t \left( \frac{1}{\Delta r} \delta_k F^x(\tau^{n+2/3}) |
635 |
+ \tau^{n} \frac{1}{\Delta r} \delta_i w \right) |
+ \tau^{n} \frac{1}{\Delta r} \delta_i w \right) |
636 |
\end{eqnarray} |
\end{eqnarray} |
664 |
|
|
665 |
\end{minipage} } |
\end{minipage} } |
666 |
|
|
667 |
|
\begin{figure} |
668 |
|
\resizebox{3.5in}{!}{\includegraphics{part2/multiDim_CS.eps}} |
669 |
|
\caption{Muti-dimensional advection time-stepping with Cubed-Sphere topology |
670 |
|
\label{fig:advect-multidim_cs} |
671 |
|
} |
672 |
|
\end{figure} |
673 |
|
|
674 |
\section{Comparison of advection schemes} |
\section{Comparison of advection schemes} |
675 |
|
\label{sect:tracer_advection_schemes} |
676 |
\begin{rawhtml} |
\begin{rawhtml} |
677 |
<!-- CMIREDIR:comparison_of_advection_schemes: --> |
<!-- CMIREDIR:comparison_of_advection_schemes: --> |
678 |
\end{rawhtml} |
\end{rawhtml} |
684 |
Advection Scheme & code & use & use Multi- & Stencil & comments \\ |
Advection Scheme & code & use & use Multi- & Stencil & comments \\ |
685 |
& & A.B. & dimension & (1 dim) & \\ |
& & A.B. & dimension & (1 dim) & \\ |
686 |
\hline \hline |
\hline \hline |
687 |
|
$1^{rst}$order upwind & 1 & No & Yes & 3 pts & linear/$\tau$, non-linear/v\\ |
688 |
|
\hline |
689 |
centered $2^{nd}$order & 2 & Yes & No & 3 pts & linear \\ |
centered $2^{nd}$order & 2 & Yes & No & 3 pts & linear \\ |
690 |
\hline |
\hline |
691 |
$3^{rd}$order upwind & 3 & Yes & No & 5 pts & linear/$\tau$\\ |
$3^{rd}$order upwind & 3 & Yes & No & 5 pts & linear/$\tau$\\ |
692 |
\hline |
\hline |
693 |
centered $4^{th}$order & 4 & Yes & No & 5 pts & linear \\ |
centered $4^{th}$order & 4 & Yes & No & 5 pts & linear \\ |
694 |
\hline \hline |
\hline \hline |
695 |
% Lax-Wendroff & 10 & No & Yes & 3 pts & linear/tracer, non-linear/flow\\ |
$2^{nd}$order DST (Lax-Wendroff) & 20 & |
696 |
% \hline |
No & Yes & 3 pts & linear/$\tau$, non-linear/v\\ |
697 |
|
\hline |
698 |
$3^{rd}$order DST & 30 & No & Yes & 5 pts & linear/$\tau$, non-linear/v\\ |
$3^{rd}$order DST & 30 & No & Yes & 5 pts & linear/$\tau$, non-linear/v\\ |
699 |
\hline \hline |
\hline \hline |
700 |
$2^{nd}$order Flux Limiters & 77 & No & Yes & 5 pts & non-linear \\ |
$2^{nd}$order Flux Limiters & 77 & No & Yes & 5 pts & non-linear \\ |