2 |
% $Name$ |
% $Name$ |
3 |
|
|
4 |
\section{Tracer equations} |
\section{Tracer equations} |
5 |
\label{sect:tracer_equations} |
\label{sec:tracer_equations} |
6 |
|
\begin{rawhtml} |
7 |
|
<!-- CMIREDIR:tracer_equations: --> |
8 |
|
\end{rawhtml} |
9 |
|
|
10 |
The basic discretization used for the tracer equations is the second |
The basic discretization used for the tracer equations is the second |
11 |
order piece-wise constant finite volume form of the forced |
order piece-wise constant finite volume form of the forced |
18 |
described here. |
described here. |
19 |
|
|
20 |
\subsection{Time-stepping of tracers: ABII} |
\subsection{Time-stepping of tracers: ABII} |
21 |
\label{sect:tracer_equations_abII} |
\label{sec:tracer_equations_abII} |
22 |
|
\begin{rawhtml} |
23 |
|
<!-- CMIREDIR:tracer_equations_abII: --> |
24 |
|
\end{rawhtml} |
25 |
|
|
26 |
The default advection scheme is the centered second order method which |
The default advection scheme is the centered second order method which |
27 |
requires a second order or quasi-second order time-stepping scheme to |
requires a second order or quasi-second order time-stepping scheme to |
129 |
|
|
130 |
|
|
131 |
\section{Linear advection schemes} |
\section{Linear advection schemes} |
132 |
\label{sect:tracer-advection} |
\label{sec:tracer-advection} |
133 |
\begin{rawhtml} |
\begin{rawhtml} |
134 |
<!-- CMIREDIR:linear_advection_schemes: --> |
<!-- CMIREDIR:linear_advection_schemes: --> |
135 |
\end{rawhtml} |
\end{rawhtml} |
136 |
|
|
137 |
\begin{figure} |
\begin{figure} |
138 |
\resizebox{5.5in}{!}{\includegraphics{part2/advect-1d-lo.eps}} |
\resizebox{5.5in}{!}{\includegraphics{s_algorithm/figs/advect-1d-lo.eps}} |
139 |
\caption{ |
\caption{ |
140 |
Comparison of 1-D advection schemes. Courant number is 0.05 with 60 |
Comparison of 1-D advection schemes. Courant number is 0.05 with 60 |
141 |
points and solutions are shown for T=1 (one complete period). |
points and solutions are shown for T=1 (one complete period). |
153 |
\end{figure} |
\end{figure} |
154 |
|
|
155 |
\begin{figure} |
\begin{figure} |
156 |
\resizebox{5.5in}{!}{\includegraphics{part2/advect-1d-hi.eps}} |
\resizebox{5.5in}{!}{\includegraphics{s_algorithm/figs/advect-1d-hi.eps}} |
157 |
\caption{ |
\caption{ |
158 |
Comparison of 1-D advection schemes. Courant number is 0.89 with 60 |
Comparison of 1-D advection schemes. Courant number is 0.89 with 60 |
159 |
points and solutions are shown for T=1 (one complete period). |
points and solutions are shown for T=1 (one complete period). |
359 |
|
|
360 |
|
|
361 |
\section{Non-linear advection schemes} |
\section{Non-linear advection schemes} |
362 |
|
\label{sec:non-linear_advection_schemes} |
363 |
|
\begin{rawhtml} |
364 |
|
<!-- CMIREDIR:non-linear_advection_schemes: --> |
365 |
|
\end{rawhtml} |
366 |
|
|
367 |
Non-linear advection schemes invoke non-linear interpolation and are |
Non-linear advection schemes invoke non-linear interpolation and are |
368 |
widely used in computational fluid dynamics (non-linear does not refer |
widely used in computational fluid dynamics (non-linear does not refer |
550 |
\subsection{Multi-dimensional advection} |
\subsection{Multi-dimensional advection} |
551 |
|
|
552 |
\begin{figure} |
\begin{figure} |
553 |
\resizebox{5.5in}{!}{\includegraphics{part2/advect-2d-lo-diag.eps}} |
\resizebox{5.5in}{!}{\includegraphics{s_algorithm/figs/advect-2d-lo-diag.eps}} |
554 |
\caption{ |
\caption{ |
555 |
Comparison of advection schemes in two dimensions; diagonal advection |
Comparison of advection schemes in two dimensions; diagonal advection |
556 |
of a resolved Gaussian feature. Courant number is 0.01 with |
of a resolved Gaussian feature. Courant number is 0.01 with |
571 |
\end{figure} |
\end{figure} |
572 |
|
|
573 |
\begin{figure} |
\begin{figure} |
574 |
\resizebox{5.5in}{!}{\includegraphics{part2/advect-2d-mid-diag.eps}} |
\resizebox{5.5in}{!}{\includegraphics{s_algorithm/figs/advect-2d-mid-diag.eps}} |
575 |
\caption{ |
\caption{ |
576 |
Comparison of advection schemes in two dimensions; diagonal advection |
Comparison of advection schemes in two dimensions; diagonal advection |
577 |
of a resolved Gaussian feature. Courant number is 0.27 with |
of a resolved Gaussian feature. Courant number is 0.27 with |
592 |
\end{figure} |
\end{figure} |
593 |
|
|
594 |
\begin{figure} |
\begin{figure} |
595 |
\resizebox{5.5in}{!}{\includegraphics{part2/advect-2d-hi-diag.eps}} |
\resizebox{5.5in}{!}{\includegraphics{s_algorithm/figs/advect-2d-hi-diag.eps}} |
596 |
\caption{ |
\caption{ |
597 |
Comparison of advection schemes in two dimensions; diagonal advection |
Comparison of advection schemes in two dimensions; diagonal advection |
598 |
of a resolved Gaussian feature. Courant number is 0.47 with |
of a resolved Gaussian feature. Courant number is 0.47 with |
628 |
\tau^{n+1/3} & = & \tau^{n} |
\tau^{n+1/3} & = & \tau^{n} |
629 |
- \Delta t \left( \frac{1}{\Delta x} \delta_i F^x(\tau^{n}) |
- \Delta t \left( \frac{1}{\Delta x} \delta_i F^x(\tau^{n}) |
630 |
+ \tau^{n} \frac{1}{\Delta x} \delta_i u \right) \\ |
+ \tau^{n} \frac{1}{\Delta x} \delta_i u \right) \\ |
631 |
\tau^{n+2/3} & = & \tau^{n} |
\tau^{n+2/3} & = & \tau^{n+1/3} |
632 |
- \Delta t \left( \frac{1}{\Delta y} \delta_j F^y(\tau^{n+1/3}) |
- \Delta t \left( \frac{1}{\Delta y} \delta_j F^y(\tau^{n+1/3}) |
633 |
+ \tau^{n} \frac{1}{\Delta y} \delta_i v \right) \\ |
+ \tau^{n} \frac{1}{\Delta y} \delta_i v \right) \\ |
634 |
\tau^{n+3/3} & = & \tau^{n} |
\tau^{n+3/3} & = & \tau^{n+2/3} |
635 |
- \Delta t \left( \frac{1}{\Delta r} \delta_k F^x(\tau^{n+2/3}) |
- \Delta t \left( \frac{1}{\Delta r} \delta_k F^x(\tau^{n+2/3}) |
636 |
+ \tau^{n} \frac{1}{\Delta r} \delta_i w \right) |
+ \tau^{n} \frac{1}{\Delta r} \delta_i w \right) |
637 |
\end{eqnarray} |
\end{eqnarray} |
665 |
|
|
666 |
\end{minipage} } |
\end{minipage} } |
667 |
|
|
668 |
|
\begin{figure} |
669 |
|
\resizebox{3.5in}{!}{\includegraphics{s_algorithm/figs/multiDim_CS.eps}} |
670 |
|
\caption{Muti-dimensional advection time-stepping with Cubed-Sphere topology |
671 |
|
\label{fig:advect-multidim_cs} |
672 |
|
} |
673 |
|
\end{figure} |
674 |
|
|
675 |
\section{Comparison of advection schemes} |
\section{Comparison of advection schemes} |
676 |
|
\label{sec:tracer_advection_schemes} |
677 |
|
\begin{rawhtml} |
678 |
|
<!-- CMIREDIR:comparison_of_advection_schemes: --> |
679 |
|
\end{rawhtml} |
680 |
|
|
681 |
|
\begin{table}[htb] |
682 |
|
\centering |
683 |
|
\begin{tabular}[htb]{|l|c|c|c|c|l|} |
684 |
|
\hline |
685 |
|
Advection Scheme & code & use & use Multi- & Stencil & comments \\ |
686 |
|
& & A.B. & dimension & (1 dim) & \\ |
687 |
|
\hline \hline |
688 |
|
$1^{rst}$order upwind & 1 & No & Yes & 3 pts & linear/$\tau$, non-linear/v\\ |
689 |
|
\hline |
690 |
|
centered $2^{nd}$order & 2 & Yes & No & 3 pts & linear \\ |
691 |
|
\hline |
692 |
|
$3^{rd}$order upwind & 3 & Yes & No & 5 pts & linear/$\tau$\\ |
693 |
|
\hline |
694 |
|
centered $4^{th}$order & 4 & Yes & No & 5 pts & linear \\ |
695 |
|
\hline \hline |
696 |
|
$2^{nd}$order DST (Lax-Wendroff) & 20 & |
697 |
|
No & Yes & 3 pts & linear/$\tau$, non-linear/v\\ |
698 |
|
\hline |
699 |
|
$3^{rd}$order DST & 30 & No & Yes & 5 pts & linear/$\tau$, non-linear/v\\ |
700 |
|
\hline \hline |
701 |
|
$2^{nd}$order Flux Limiters & 77 & No & Yes & 5 pts & non-linear \\ |
702 |
|
\hline |
703 |
|
$3^{nd}$order DST Flux limiter & 33 & No & Yes & 5 pts & non-linear \\ |
704 |
|
\hline |
705 |
|
\end{tabular} |
706 |
|
\caption{Summary of the different advection schemes available in MITgcm. |
707 |
|
``A.B.'' stands for Adams-Bashforth and ``DST'' for direct space time. |
708 |
|
The code corresponds to the number used to select the corresponding |
709 |
|
advection scheme in the parameter file (e.g., {\bf tempAdvScheme}=3 in |
710 |
|
file {\em data} selects the $3^{rd}$ order upwind advection scheme |
711 |
|
for temperature). |
712 |
|
} |
713 |
|
\label{tab:advectionShemes_summary} |
714 |
|
\end{table} |
715 |
|
|
716 |
|
|
717 |
Figs.~\ref{fig:advect-2d-lo-diag}, \ref{fig:advect-2d-mid-diag} and |
Figs.~\ref{fig:advect-2d-lo-diag}, \ref{fig:advect-2d-mid-diag} and |
718 |
\ref{fig:advect-2d-hi-diag} show solutions to a simple diagonal |
\ref{fig:advect-2d-hi-diag} show solutions to a simple diagonal |