/[MITgcm]/manual/s_algorithm/text/tracer.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/tracer.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.3 by adcroft, Tue Sep 25 20:13:42 2001 UTC revision 1.24 by cnh, Thu Jan 17 17:42:11 2008 UTC
# Line 2  Line 2 
2  % $Name$  % $Name$
3    
4  \section{Tracer equations}  \section{Tracer equations}
5    \label{sect:tracer_equations}
6    \begin{rawhtml}
7    <!-- CMIREDIR:tracer_equations: -->
8    \end{rawhtml}
9    
10  The basic discretization used for the tracer equations is the second  The basic discretization used for the tracer equations is the second
11  order piece-wise constant finite volume form of the forced  order piece-wise constant finite volume form of the forced
12  advection-diussion equations. There are many alternatives to second  advection-diffusion equations. There are many alternatives to second
13  order method for advection and alternative parameterizations for the  order method for advection and alternative parameterizations for the
14  sub-grid scale processes. The Gent-McWilliams eddy parameterization,  sub-grid scale processes. The Gent-McWilliams eddy parameterization,
15  KPP mixing scheme and PV flux parameterization are all dealt with in  KPP mixing scheme and PV flux parameterization are all dealt with in
# Line 14  part of the tracer equations and the var Line 18  part of the tracer equations and the var
18  described here.  described here.
19    
20  \subsection{Time-stepping of tracers: ABII}  \subsection{Time-stepping of tracers: ABII}
21    \label{sect:tracer_equations_abII}
22    \begin{rawhtml}
23    <!-- CMIREDIR:tracer_equations_abII: -->
24    \end{rawhtml}
25    
26  The default advection scheme is the centered second order method which  The default advection scheme is the centered second order method which
27  requires a second order or quasi-second order time-stepping scheme to  requires a second order or quasi-second order time-stepping scheme to
# Line 41  only affects the surface layer since the Line 49  only affects the surface layer since the
49  everywhere else. This term is therefore referred to as the surface  everywhere else. This term is therefore referred to as the surface
50  correction term. Global conservation is not possible using the  correction term. Global conservation is not possible using the
51  flux-form (as here) and a linearized free-surface  flux-form (as here) and a linearized free-surface
52  (\cite{Griffies00,Campin02}).  (\cite{griffies:00,campin:02}).
53    
54  The continuity equation can be recovered by setting  The continuity equation can be recovered by setting
55  $G_{diff}=G_{forc}=0$ and $\tau=1$.  $G_{diff}=G_{forc}=0$ and $\tau=1$.
56    
57  The driver routine that calls the routines to calculate tendancies are  The driver routine that calls the routines to calculate tendencies are
58  {\em S/R CALC\_GT} and {\em S/R CALC\_GS} for temperature and salt  {\em S/R CALC\_GT} and {\em S/R CALC\_GS} for temperature and salt
59  (moisture), respectively. These in turn call a generic advection  (moisture), respectively. These in turn call a generic advection
60  diffusion routine {\em S/R GAD\_CALC\_RHS} that is called with the  diffusion routine {\em S/R GAD\_CALC\_RHS} that is called with the
61  flow field and relevent tracer as arguments and returns the collective  flow field and relevant tracer as arguments and returns the collective
62  tendancy due to advection and diffusion. Forcing is add subsequently  tendency due to advection and diffusion. Forcing is add subsequently
63  in {\em S/R CALC\_GT} or {\em S/R CALC\_GS} to the same tendancy  in {\em S/R CALC\_GT} or {\em S/R CALC\_GS} to the same tendency
64  array.  array.
65    
66  \fbox{ \begin{minipage}{4.75in}  \fbox{ \begin{minipage}{4.75in}
# Line 66  $F_r$: {\bf fVerT} (argument) Line 74  $F_r$: {\bf fVerT} (argument)
74    
75  \end{minipage} }  \end{minipage} }
76    
77    The space and time discretization are treated separately (method of
78  The space and time discretizations are treated seperately (method of  lines). Tendencies are calculated at time levels $n$ and $n-1$ and
79  lines). The Adams-Bashforth time discretization reads:  extrapolated to $n+1/2$ using the Adams-Bashforth method:
80  \marginpar{$\epsilon$: {\bf AB\_eps}}  \marginpar{$\epsilon$: {\bf AB\_eps}}
 \marginpar{$\Delta t$: {\bf deltaTtracer}}  
81  \begin{equation}  \begin{equation}
82  \tau^{(n+1)} = \tau^{(n)} + \Delta t \left(  G^{(n+1/2)} =
83  (\frac{3}{2} + \epsilon) G^{(n)} - (\frac{1}{2} + \epsilon) G^{(n-1)}  (\frac{3}{2} + \epsilon) G^{(n)} - (\frac{1}{2} + \epsilon) G^{(n-1)}
 \right)  
84  \end{equation}  \end{equation}
85  where $G^{(n)} = G_{adv}^\tau + G_{diff}^\tau + G_{src}^\tau$ at time  where $G^{(n)} = G_{adv}^\tau + G_{diff}^\tau + G_{src}^\tau$ at time
86  step $n$.  step $n$. The tendency at $n-1$ is not re-calculated but rather the
87    tendency at $n$ is stored in a global array for later re-use.
88    
89  Strictly speaking the ABII scheme should be applied only to the  \fbox{ \begin{minipage}{4.75in}
90  advection terms. However, this scheme is only used in conjuction with  {\em S/R ADAMS\_BASHFORTH2} ({\em model/src/adams\_bashforth2.F})
91  the standard second, third and fourth order advection  
92  schemes. Selection of any other advection scheme disables  $G^{(n+1/2)}$: {\bf gTracer} (argument on exit)
93  Adams-Bashforth for tracers so that explicit diffusion and forcing use  
94  the forward method.  $G^{(n)}$: {\bf gTracer} (argument on entry)
95    
96    $G^{(n-1)}$: {\bf gTrNm1} (argument)
97    
98    $\epsilon$: {\bf ABeps} (PARAMS.h)
99    
100    \end{minipage} }
101    
102    The tracers are stepped forward in time using the extrapolated tendency:
103    \begin{equation}
104    \tau^{(n+1)} = \tau^{(n)} + \Delta t G^{(n+1/2)}
105    \end{equation}
106    \marginpar{$\Delta t$: {\bf deltaTtracer}}
107    
108  \fbox{ \begin{minipage}{4.75in}  \fbox{ \begin{minipage}{4.75in}
109  {\em S/R TIMESTEP\_TRACER} ({\em model/src/timestep\_tracer.F})  {\em S/R TIMESTEP\_TRACER} ({\em model/src/timestep\_tracer.F})
110    
111  $\tau$: {\bf tracer} (argument)  $\tau^{(n+1)}$: {\bf gTracer} (argument on exit)
112    
113  $G^{(n)}$: {\bf gTracer} (argument)  $\tau^{(n)}$: {\bf tracer} (argument on entry)
114    
115  $G^{(n-1)}$: {\bf gTrNm1} (argument)  $G^{(n+1/2)}$: {\bf gTracer} (argument)
116    
117  $\Delta t$: {\bf deltaTtracer} (PARAMS.h)  $\Delta t$: {\bf deltaTtracer} (PARAMS.h)
118    
119  \end{minipage} }  \end{minipage} }
120    
121    Strictly speaking the ABII scheme should be applied only to the
122    advection terms. However, this scheme is only used in conjunction with
123    the standard second, third and fourth order advection
124    schemes. Selection of any other advection scheme disables
125    Adams-Bashforth for tracers so that explicit diffusion and forcing use
126    the forward method.
127    
128    
129    
130    
131    \section{Linear advection schemes}
132    \label{sect:tracer-advection}
133    \begin{rawhtml}
134    <!-- CMIREDIR:linear_advection_schemes: -->
135    \end{rawhtml}
136    
137  \begin{figure}  \begin{figure}
138  \resizebox{5.5in}{!}{\includegraphics{part2/advect-1d-lo.eps}}  \resizebox{5.5in}{!}{\includegraphics{part2/advect-1d-lo.eps}}
139  \caption{  \caption{
# Line 136  $\mu=c/(1-c)$. Line 171  $\mu=c/(1-c)$.
171  }  }
172  \end{figure}  \end{figure}
173    
 \section{Linear advection schemes}  
   
174  The advection schemes known as centered second order, centered fourth  The advection schemes known as centered second order, centered fourth
175  order, first order upwind and upwind biased third order are known as  order, first order upwind and upwind biased third order are known as
176  linear advection schemes because the coefficient for interpolation of  linear advection schemes because the coefficient for interpolation of
# Line 148  commonly used in the field and most fami Line 181  commonly used in the field and most fami
181  \subsection{Centered second order advection-diffusion}  \subsection{Centered second order advection-diffusion}
182    
183  The basic discretization, centered second order, is the default. It is  The basic discretization, centered second order, is the default. It is
184  designed to be consistant with the continuity equation to facilitate  designed to be consistent with the continuity equation to facilitate
185  conservation properties analogous to the continuum. However, centered  conservation properties analogous to the continuum. However, centered
186  second order advection is notoriously noisey and must be used in  second order advection is notoriously noisy and must be used in
187  conjuction with some finite amount of diffusion to produce a sensible  conjunction with some finite amount of diffusion to produce a sensible
188  solution.  solution.
189    
190  The advection operator is discretized:  The advection operator is discretized:
# Line 177  W & = & {\cal A}_c w Line 210  W & = & {\cal A}_c w
210    
211  For non-divergent flow, this discretization can be shown to conserve  For non-divergent flow, this discretization can be shown to conserve
212  the tracer both locally and globally and to globally conserve tracer  the tracer both locally and globally and to globally conserve tracer
213  variance, $\tau^2$. The proof is given in \cite{Adcroft95,Adcroft97}.  variance, $\tau^2$. The proof is given in \cite{adcroft:95,adcroft:97}.
214    
215  \fbox{ \begin{minipage}{4.75in}  \fbox{ \begin{minipage}{4.75in}
216  {\em S/R GAD\_C2\_ADV\_X} ({\em gad\_c2\_adv\_x.F})  {\em S/R GAD\_C2\_ADV\_X} ({\em gad\_c2\_adv\_x.F})
# Line 225  F_r & = & W \overline{\tau - \frac{1}{6} Line 258  F_r & = & W \overline{\tau - \frac{1}{6}
258  \end{eqnarray}  \end{eqnarray}
259    
260  At boundaries, $\delta_{\hat{n}} \tau$ is set to zero allowing  At boundaries, $\delta_{\hat{n}} \tau$ is set to zero allowing
261  $\delta_{nn}$ to be evaluated. We are currently examing the accuracy  $\delta_{nn}$ to be evaluated. We are currently examine the accuracy
262  of this boundary condition and the effect on the solution.  of this boundary condition and the effect on the solution.
263    
264    \fbox{ \begin{minipage}{4.75in}
265    {\em S/R GAD\_U3\_ADV\_X} ({\em gad\_u3\_adv\_x.F})
266    
267    $F_x$: {\bf uT} (argument)
268    
269    $U$: {\bf uTrans} (argument)
270    
271    $\tau$: {\bf tracer} (argument)
272    
273    {\em S/R GAD\_U3\_ADV\_Y} ({\em gad\_u3\_adv\_y.F})
274    
275    $F_y$: {\bf vT} (argument)
276    
277    $V$: {\bf vTrans} (argument)
278    
279    $\tau$: {\bf tracer} (argument)
280    
281    {\em S/R GAD\_U3\_ADV\_R} ({\em gad\_u3\_adv\_r.F})
282    
283    $F_r$: {\bf wT} (argument)
284    
285    $W$: {\bf rTrans} (argument)
286    
287    $\tau$: {\bf tracer} (argument)
288    
289    \end{minipage} }
290    
291  \subsection{Centered fourth order advection}  \subsection{Centered fourth order advection}
292    
293  Centered fourth order advection is formally the most accurate scheme  Centered fourth order advection is formally the most accurate scheme
294  we have implemented and can be used to great effect in high resolution  we have implemented and can be used to great effect in high resolution
295  simultation where dynamical scales are well resolved. However, the  simulation where dynamical scales are well resolved. However, the
296  scheme is noisey like the centered second order method and so must be  scheme is noisy like the centered second order method and so must be
297  used with some finite amount of diffusion. Bi-harmonic is recommended  used with some finite amount of diffusion. Bi-harmonic is recommended
298  since it is more scale selective and less likely to diffuse away the  since it is more scale selective and less likely to diffuse away the
299  well resolved gradient the fourth order scheme worked so hard to  well resolved gradient the fourth order scheme worked so hard to
# Line 248  F_r & = & W \overline{\tau - \frac{1}{6} Line 307  F_r & = & W \overline{\tau - \frac{1}{6}
307  \end{eqnarray}  \end{eqnarray}
308    
309  As for the third order scheme, the best discretization near boundaries  As for the third order scheme, the best discretization near boundaries
310  is under investigation but currenlty $\delta_i \tau=0$ on a boundary.  is under investigation but currently $\delta_i \tau=0$ on a boundary.
311    
312    \fbox{ \begin{minipage}{4.75in}
313    {\em S/R GAD\_C4\_ADV\_X} ({\em gad\_c4\_adv\_x.F})
314    
315    $F_x$: {\bf uT} (argument)
316    
317    $U$: {\bf uTrans} (argument)
318    
319    $\tau$: {\bf tracer} (argument)
320    
321    {\em S/R GAD\_C4\_ADV\_Y} ({\em gad\_c4\_adv\_y.F})
322    
323    $F_y$: {\bf vT} (argument)
324    
325    $V$: {\bf vTrans} (argument)
326    
327    $\tau$: {\bf tracer} (argument)
328    
329    {\em S/R GAD\_C4\_ADV\_R} ({\em gad\_c4\_adv\_r.F})
330    
331    $F_r$: {\bf wT} (argument)
332    
333    $W$: {\bf rTrans} (argument)
334    
335    $\tau$: {\bf tracer} (argument)
336    
337    \end{minipage} }
338    
339    
340  \subsection{First order upwind advection}  \subsection{First order upwind advection}
341    
# Line 272  if the limiter is set to zero. Line 359  if the limiter is set to zero.
359    
360    
361  \section{Non-linear advection schemes}  \section{Non-linear advection schemes}
362    \label{sect:non-linear_advection_schemes}
363    \begin{rawhtml}
364    <!-- CMIREDIR:non-linear_advection_schemes: -->
365    \end{rawhtml}
366    
367  Non-linear advection schemes invoke non-linear interpolation and are  Non-linear advection schemes invoke non-linear interpolation and are
368  widely used in computational fluid dynamics (non-linear does not refer  widely used in computational fluid dynamics (non-linear does not refer
# Line 310  r = \frac{ \tau_{i-1} - \tau_{i-2} }{ \t Line 401  r = \frac{ \tau_{i-1} - \tau_{i-2} }{ \t
401  r = \frac{ \tau_{i+1} - \tau_{i} }{ \tau_{i} - \tau_{i-1} } & \forall & u < 0  r = \frac{ \tau_{i+1} - \tau_{i} }{ \tau_{i} - \tau_{i-1} } & \forall & u < 0
402  \end{eqnarray}  \end{eqnarray}
403  as it's argument. There are many choices of limiter function but we  as it's argument. There are many choices of limiter function but we
404  only provide the Superbee limiter \cite{Roe85}:  only provide the Superbee limiter \cite{roe:85}:
405  \begin{equation}  \begin{equation}
406  \psi(r) = \max[0,\min[1,2r],\min[2,r]]  \psi(r) = \max[0,\min[1,2r],\min[2,r]]
407  \end{equation}  \end{equation}
408    
409    \fbox{ \begin{minipage}{4.75in}
410    {\em S/R GAD\_FLUXLIMIT\_ADV\_X} ({\em gad\_fluxlimit\_adv\_x.F})
411    
412    $F_x$: {\bf uT} (argument)
413    
414    $U$: {\bf uTrans} (argument)
415    
416    $\tau$: {\bf tracer} (argument)
417    
418    {\em S/R GAD\_FLUXLIMIT\_ADV\_Y} ({\em gad\_fluxlimit\_adv\_y.F})
419    
420    $F_y$: {\bf vT} (argument)
421    
422    $V$: {\bf vTrans} (argument)
423    
424    $\tau$: {\bf tracer} (argument)
425    
426    {\em S/R GAD\_FLUXLIMIT\_ADV\_R} ({\em gad\_fluxlimit\_adv\_r.F})
427    
428    $F_r$: {\bf wT} (argument)
429    
430    $W$: {\bf rTrans} (argument)
431    
432    $\tau$: {\bf tracer} (argument)
433    
434    \end{minipage} }
435    
436    
437  \subsection{Third order direct space time}  \subsection{Third order direct space time}
438    
439  The direct-space-time method deals with space and time discretization  The direct-space-time method deals with space and time discretization
440  together (other methods that treat space and time seperately are known  together (other methods that treat space and time separately are known
441  collectively as the ``Method of Lines''). The Lax-Wendroff scheme  collectively as the ``Method of Lines''). The Lax-Wendroff scheme
442  falls into this category; it adds sufficient diffusion to a second  falls into this category; it adds sufficient diffusion to a second
443  order flux that the forward-in-time method is stable. The upwind  order flux that the forward-in-time method is stable. The upwind
# Line 337  where Line 455  where
455  d_1 & = & \frac{1}{6} ( 2 - |c| ) ( 1 - |c| ) \\  d_1 & = & \frac{1}{6} ( 2 - |c| ) ( 1 - |c| ) \\
456  d_2 & = & \frac{1}{6} ( 1 - |c| ) ( 1 + |c| )  d_2 & = & \frac{1}{6} ( 1 - |c| ) ( 1 + |c| )
457  \end{eqnarray}  \end{eqnarray}
458  The coefficients $d_0$ and $d_1$ approach $1/3$ and $1/6$ repectively  The coefficients $d_0$ and $d_1$ approach $1/3$ and $1/6$ respectively
459  as the Courant number, $c$, vanishes. In this limit, the conventional  as the Courant number, $c$, vanishes. In this limit, the conventional
460  third order upwind method is recovered. For finite Courant number, the  third order upwind method is recovered. For finite Courant number, the
461  deviations from the linear method are analogous to the diffusion added  deviations from the linear method are analogous to the diffusion added
# Line 345  to centered second order advection in th Line 463  to centered second order advection in th
463    
464  The DST3 method described above must be used in a forward-in-time  The DST3 method described above must be used in a forward-in-time
465  manner and is stable for $0 \le |c| \le 1$. Although the scheme  manner and is stable for $0 \le |c| \le 1$. Although the scheme
466  appears to be forward-in-time, it is in fact second order in time and  appears to be forward-in-time, it is in fact third order in time and
467  the accuracy increases with the Courant number! For low Courant  the accuracy increases with the Courant number! For low Courant
468  number, DST3 produces very similar results (indistinguishable in  number, DST3 produces very similar results (indistinguishable in
469  Fig.~\ref{fig:advect-1d-lo}) to the linear third order method but for  Fig.~\ref{fig:advect-1d-lo}) to the linear third order method but for
# Line 353  large Courant number, where the linear u Line 471  large Courant number, where the linear u
471  unstable, the scheme is extremely accurate  unstable, the scheme is extremely accurate
472  (Fig.~\ref{fig:advect-1d-hi}) with only minor overshoots.  (Fig.~\ref{fig:advect-1d-hi}) with only minor overshoots.
473    
474    \fbox{ \begin{minipage}{4.75in}
475    {\em S/R GAD\_DST3\_ADV\_X} ({\em gad\_dst3\_adv\_x.F})
476    
477    $F_x$: {\bf uT} (argument)
478    
479    $U$: {\bf uTrans} (argument)
480    
481    $\tau$: {\bf tracer} (argument)
482    
483    {\em S/R GAD\_DST3\_ADV\_Y} ({\em gad\_dst3\_adv\_y.F})
484    
485    $F_y$: {\bf vT} (argument)
486    
487    $V$: {\bf vTrans} (argument)
488    
489    $\tau$: {\bf tracer} (argument)
490    
491    {\em S/R GAD\_DST3\_ADV\_R} ({\em gad\_dst3\_adv\_r.F})
492    
493    $F_r$: {\bf wT} (argument)
494    
495    $W$: {\bf rTrans} (argument)
496    
497    $\tau$: {\bf tracer} (argument)
498    
499    \end{minipage} }
500    
501    
502  \subsection{Third order direct space time with flux limiting}  \subsection{Third order direct space time with flux limiting}
503    
504  The overshoots in the DST3 method can be controlled with a flux limiter.  The overshoots in the DST3 method can be controlled with a flux limiter.
# Line 373  and the limiter is the Sweby limiter: Line 519  and the limiter is the Sweby limiter:
519  \psi(r) = \max[0, \min[\min(1,d_0+d_1r],\frac{1-c}{c}r ]]  \psi(r) = \max[0, \min[\min(1,d_0+d_1r],\frac{1-c}{c}r ]]
520  \end{equation}  \end{equation}
521    
522    \fbox{ \begin{minipage}{4.75in}
523    {\em S/R GAD\_DST3FL\_ADV\_X} ({\em gad\_dst3\_adv\_x.F})
524    
525    $F_x$: {\bf uT} (argument)
526    
527    $U$: {\bf uTrans} (argument)
528    
529    $\tau$: {\bf tracer} (argument)
530    
531    {\em S/R GAD\_DST3FL\_ADV\_Y} ({\em gad\_dst3\_adv\_y.F})
532    
533    $F_y$: {\bf vT} (argument)
534    
535    $V$: {\bf vTrans} (argument)
536    
537    $\tau$: {\bf tracer} (argument)
538    
539    {\em S/R GAD\_DST3FL\_ADV\_R} ({\em gad\_dst3\_adv\_r.F})
540    
541    $F_r$: {\bf wT} (argument)
542    
543    $W$: {\bf rTrans} (argument)
544    
545    $\tau$: {\bf tracer} (argument)
546    
547    \end{minipage} }
548    
549    
550  \subsection{Multi-dimensional advection}  \subsection{Multi-dimensional advection}
551    
552  In many of the aforementioned advection schemes the behaviour in  \begin{figure}
553    \resizebox{5.5in}{!}{\includegraphics{part2/advect-2d-lo-diag.eps}}
554    \caption{
555    Comparison of advection schemes in two dimensions; diagonal advection
556    of a resolved Gaussian feature. Courant number is 0.01 with
557    30$\times$30 points and solutions are shown for T=1/2. White lines
558    indicate zero crossing (ie. the presence of false minima).  The left
559    column shows the second order schemes; top) centered second order with
560    Adams-Bashforth, middle) Lax-Wendroff and bottom) Superbee flux
561    limited. The middle column shows the third order schemes; top) upwind
562    biased third order with Adams-Bashforth, middle) third order direct
563    space-time method and bottom) the same with flux limiting. The top
564    right panel shows the centered fourth order scheme with
565    Adams-Bashforth and right middle panel shows a fourth order variant on
566    the DST method. Bottom right panel shows the Superbee flux limiter
567    (second order) applied independently in each direction (method of
568    lines).
569    \label{fig:advect-2d-lo-diag}
570    }
571    \end{figure}
572    
573    \begin{figure}
574    \resizebox{5.5in}{!}{\includegraphics{part2/advect-2d-mid-diag.eps}}
575    \caption{
576    Comparison of advection schemes in two dimensions; diagonal advection
577    of a resolved Gaussian feature. Courant number is 0.27 with
578    30$\times$30 points and solutions are shown for T=1/2. White lines
579    indicate zero crossing (ie. the presence of false minima).  The left
580    column shows the second order schemes; top) centered second order with
581    Adams-Bashforth, middle) Lax-Wendroff and bottom) Superbee flux
582    limited. The middle column shows the third order schemes; top) upwind
583    biased third order with Adams-Bashforth, middle) third order direct
584    space-time method and bottom) the same with flux limiting. The top
585    right panel shows the centered fourth order scheme with
586    Adams-Bashforth and right middle panel shows a fourth order variant on
587    the DST method. Bottom right panel shows the Superbee flux limiter
588    (second order) applied independently in each direction (method of
589    lines).
590    \label{fig:advect-2d-mid-diag}
591    }
592    \end{figure}
593    
594    \begin{figure}
595    \resizebox{5.5in}{!}{\includegraphics{part2/advect-2d-hi-diag.eps}}
596    \caption{
597    Comparison of advection schemes in two dimensions; diagonal advection
598    of a resolved Gaussian feature. Courant number is 0.47 with
599    30$\times$30 points and solutions are shown for T=1/2. White lines
600    indicate zero crossings and initial maximum values (ie. the presence
601    of false extrema).  The left column shows the second order schemes;
602    top) centered second order with Adams-Bashforth, middle) Lax-Wendroff
603    and bottom) Superbee flux limited. The middle column shows the third
604    order schemes; top) upwind biased third order with Adams-Bashforth,
605    middle) third order direct space-time method and bottom) the same with
606    flux limiting. The top right panel shows the centered fourth order
607    scheme with Adams-Bashforth and right middle panel shows a fourth
608    order variant on the DST method. Bottom right panel shows the Superbee
609    flux limiter (second order) applied independently in each direction
610    (method of lines).
611    \label{fig:advect-2d-hi-diag}
612    }
613    \end{figure}
614    
615    
616    
617    In many of the aforementioned advection schemes the behavior in
618  multiple dimensions is not necessarily as good as the one dimensional  multiple dimensions is not necessarily as good as the one dimensional
619  behaviour. For instance, a shape preserving monotonic scheme in one  behavior. For instance, a shape preserving monotonic scheme in one
620  dimension can have severe shape distortion in two dimensions if the  dimension can have severe shape distortion in two dimensions if the
621  two components of horizontal fluxes are treated independently. There  two components of horizontal fluxes are treated independently. There
622  is a large body of literature on the subject dealing with this problem  is a large body of literature on the subject dealing with this problem
# Line 389  as if in one dimension: Line 628  as if in one dimension:
628  \tau^{n+1/3} & = & \tau^{n}  \tau^{n+1/3} & = & \tau^{n}
629  - \Delta t \left( \frac{1}{\Delta x} \delta_i F^x(\tau^{n})  - \Delta t \left( \frac{1}{\Delta x} \delta_i F^x(\tau^{n})
630             + \tau^{n} \frac{1}{\Delta x} \delta_i u \right) \\             + \tau^{n} \frac{1}{\Delta x} \delta_i u \right) \\
631  \tau^{n+2/3} & = & \tau^{n}  \tau^{n+2/3} & = & \tau^{n+1/3}
632  - \Delta t \left( \frac{1}{\Delta y} \delta_j F^y(\tau^{n+1/3})  - \Delta t \left( \frac{1}{\Delta y} \delta_j F^y(\tau^{n+1/3})
633             + \tau^{n} \frac{1}{\Delta y} \delta_i v \right) \\             + \tau^{n} \frac{1}{\Delta y} \delta_i v \right) \\
634  \tau^{n+3/3} & = & \tau^{n}  \tau^{n+3/3} & = & \tau^{n+2/3}
635  - \Delta t \left( \frac{1}{\Delta r} \delta_k F^x(\tau^{n+2/3})  - \Delta t \left( \frac{1}{\Delta r} \delta_k F^x(\tau^{n+2/3})
636             + \tau^{n} \frac{1}{\Delta r} \delta_i w \right)             + \tau^{n} \frac{1}{\Delta r} \delta_i w \right)
637  \end{eqnarray}  \end{eqnarray}
638    
639  In order to incorporate this method into the general model algorithm,  In order to incorporate this method into the general model algorithm,
640  we compute the effective tendancy rather than update the tracer so  we compute the effective tendency rather than update the tracer so
641  that other terms such as diffusion are using the $n$ time-level and  that other terms such as diffusion are using the $n$ time-level and
642  not the updated $n+3/3$ quantities:  not the updated $n+3/3$ quantities:
643  \begin{equation}  \begin{equation}
# Line 408  So that the over all time-stepping looks Line 647  So that the over all time-stepping looks
647  \begin{equation}  \begin{equation}
648  \tau^{n+1} = \tau^{n} + \Delta t \left( G^{n+1/2}_{adv} + G_{diff}(\tau^{n}) + G^{n}_{forcing} \right)  \tau^{n+1} = \tau^{n} + \Delta t \left( G^{n+1/2}_{adv} + G_{diff}(\tau^{n}) + G^{n}_{forcing} \right)
649  \end{equation}  \end{equation}
650    
651    \fbox{ \begin{minipage}{4.75in}
652    {\em S/R GAD\_ADVECTION} ({\em gad\_advection.F})
653    
654    $\tau$: {\bf Tracer} (argument)
655    
656    $G^{n+1/2}_{adv}$: {\bf Gtracer} (argument)
657    
658    $F_x, F_y, F_r$: {\bf af} (local)
659    
660    $U$: {\bf uTrans} (local)
661    
662    $V$: {\bf vTrans} (local)
663    
664    $W$: {\bf rTrans} (local)
665    
666    \end{minipage} }
667    
668    \begin{figure}
669    \resizebox{3.5in}{!}{\includegraphics{part2/multiDim_CS.eps}}
670    \caption{Muti-dimensional advection time-stepping with Cubed-Sphere topology
671    \label{fig:advect-multidim_cs}
672    }
673    \end{figure}
674    
675    \section{Comparison of advection schemes}
676    \label{sect:tracer_advection_schemes}
677    \begin{rawhtml}
678    <!-- CMIREDIR:comparison_of_advection_schemes: -->
679    \end{rawhtml}
680    
681    \begin{table}[htb]
682    \centering
683     \begin{tabular}[htb]{|l|c|c|c|c|l|}
684       \hline
685       Advection Scheme & code & use  & use Multi- & Stencil & comments \\
686                        &      & A.B. & dimension & (1 dim) & \\
687       \hline \hline
688       $1^{rst}$order upwind  & 1 &  No & Yes & 3 pts & linear/$\tau$, non-linear/v\\
689       \hline
690       centered $2^{nd}$order & 2 &  Yes & No & 3 pts & linear \\
691       \hline
692       $3^{rd}$order upwind   & 3 &  Yes & No & 5 pts & linear/$\tau$\\
693       \hline
694       centered $4^{th}$order & 4 &  Yes & No & 5 pts & linear \\
695       \hline \hline
696       $2^{nd}$order DST (Lax-Wendroff)  & 20 &
697                             No & Yes & 3 pts & linear/$\tau$, non-linear/v\\
698       \hline
699       $3^{rd}$order DST & 30 &  No & Yes & 5 pts & linear/$\tau$, non-linear/v\\
700       \hline \hline
701       $2^{nd}$order Flux Limiters & 77 &  No & Yes & 5 pts & non-linear \\
702       \hline
703       $3^{nd}$order DST Flux limiter & 33 &  No & Yes & 5 pts & non-linear \\
704       \hline
705     \end{tabular}
706     \caption{Summary of the different advection schemes available in MITgcm.
707              ``A.B.'' stands for Adams-Bashforth and ``DST'' for direct space time.
708              The code corresponds to the number used to select the corresponding
709              advection scheme in the parameter file (e.g., {\bf tempAdvScheme}=3 in
710              file {\em data} selects the $3^{rd}$ order upwind advection scheme
711              for temperature).
712       }
713     \label{tab:advectionShemes_summary}
714    \end{table}
715    
716    
717    Figs.~\ref{fig:advect-2d-lo-diag}, \ref{fig:advect-2d-mid-diag} and
718    \ref{fig:advect-2d-hi-diag} show solutions to a simple diagonal
719    advection problem using a selection of schemes for low, moderate and
720    high Courant numbers, respectively. The top row shows the linear
721    schemes, integrated with the Adams-Bashforth method. Theses schemes
722    are clearly unstable for the high Courant number and weakly unstable
723    for the moderate Courant number. The presence of false extrema is very
724    apparent for all Courant numbers. The middle row shows solutions
725    obtained with the unlimited but multi-dimensional schemes. These
726    solutions also exhibit false extrema though the pattern now shows
727    symmetry due to the multi-dimensional scheme. Also, the schemes are
728    stable at high Courant number where the linear schemes weren't. The
729    bottom row (left and middle) shows the limited schemes and most
730    obvious is the absence of false extrema. The accuracy and stability of
731    the unlimited non-linear schemes is retained at high Courant number
732    but at low Courant number the tendency is to loose amplitude in sharp
733    peaks due to diffusion. The one dimensional tests shown in
734    Figs.~\ref{fig:advect-1d-lo} and \ref{fig:advect-1d-hi} showed this
735    phenomenon.
736    
737    Finally, the bottom left and right panels use the same advection
738    scheme but the right does not use the multi-dimensional method. At low
739    Courant number this appears to not matter but for moderate Courant
740    number severe distortion of the feature is apparent. Moreover, the
741    stability of the multi-dimensional scheme is determined by the maximum
742    Courant number applied of each dimension while the stability of the
743    method of lines is determined by the sum. Hence, in the high Courant
744    number plot, the scheme is unstable.
745    
746    With many advection schemes implemented in the code two questions
747    arise: ``Which scheme is best?'' and ``Why don't you just offer the
748    best advection scheme?''. Unfortunately, no one advection scheme is
749    ``the best'' for all particular applications and for new applications
750    it is often a matter of trial to determine which is most
751    suitable. Here are some guidelines but these are not the rule;
752    \begin{itemize}
753    \item If you have a coarsely resolved model, using a
754    positive or upwind biased scheme will introduce significant diffusion
755    to the solution and using a centered higher order scheme will
756    introduce more noise. In this case, simplest may be best.
757    \item If you have a high resolution model, using a higher order
758    scheme will give a more accurate solution but scale-selective
759    diffusion might need to be employed. The flux limited methods
760    offer similar accuracy in this regime.
761    \item If your solution has shocks or propagating fronts then a
762    flux limited scheme is almost essential.
763    \item If your time-step is limited by advection, the multi-dimensional
764    non-linear schemes have the most stability (up to Courant number 1).
765    \item If you need to know how much diffusion/dissipation has occurred you
766    will have a lot of trouble figuring it out with a non-linear method.
767    \item The presence of false extrema is non-physical and this alone is the
768    strongest argument for using a positive scheme.
769    \end{itemize}

Legend:
Removed from v.1.3  
changed lines
  Added in v.1.24

  ViewVC Help
Powered by ViewVC 1.1.22