3 |
|
|
4 |
\section{Tracer equations} |
\section{Tracer equations} |
5 |
\label{sect:tracer_equations} |
\label{sect:tracer_equations} |
6 |
|
\begin{rawhtml} |
7 |
|
<!-- CMIREDIR:tracer_equations: --> |
8 |
|
\end{rawhtml} |
9 |
|
|
10 |
The basic discretization used for the tracer equations is the second |
The basic discretization used for the tracer equations is the second |
11 |
order piece-wise constant finite volume form of the forced |
order piece-wise constant finite volume form of the forced |
19 |
|
|
20 |
\subsection{Time-stepping of tracers: ABII} |
\subsection{Time-stepping of tracers: ABII} |
21 |
\label{sect:tracer_equations_abII} |
\label{sect:tracer_equations_abII} |
22 |
|
\begin{rawhtml} |
23 |
|
<!-- CMIREDIR:tracer_equations_abII: --> |
24 |
|
\end{rawhtml} |
25 |
|
|
26 |
The default advection scheme is the centered second order method which |
The default advection scheme is the centered second order method which |
27 |
requires a second order or quasi-second order time-stepping scheme to |
requires a second order or quasi-second order time-stepping scheme to |
627 |
\tau^{n+1/3} & = & \tau^{n} |
\tau^{n+1/3} & = & \tau^{n} |
628 |
- \Delta t \left( \frac{1}{\Delta x} \delta_i F^x(\tau^{n}) |
- \Delta t \left( \frac{1}{\Delta x} \delta_i F^x(\tau^{n}) |
629 |
+ \tau^{n} \frac{1}{\Delta x} \delta_i u \right) \\ |
+ \tau^{n} \frac{1}{\Delta x} \delta_i u \right) \\ |
630 |
\tau^{n+2/3} & = & \tau^{n} |
\tau^{n+2/3} & = & \tau^{n+1/3} |
631 |
- \Delta t \left( \frac{1}{\Delta y} \delta_j F^y(\tau^{n+1/3}) |
- \Delta t \left( \frac{1}{\Delta y} \delta_j F^y(\tau^{n+1/3}) |
632 |
+ \tau^{n} \frac{1}{\Delta y} \delta_i v \right) \\ |
+ \tau^{n} \frac{1}{\Delta y} \delta_i v \right) \\ |
633 |
\tau^{n+3/3} & = & \tau^{n} |
\tau^{n+3/3} & = & \tau^{n+2/3} |
634 |
- \Delta t \left( \frac{1}{\Delta r} \delta_k F^x(\tau^{n+2/3}) |
- \Delta t \left( \frac{1}{\Delta r} \delta_k F^x(\tau^{n+2/3}) |
635 |
+ \tau^{n} \frac{1}{\Delta r} \delta_i w \right) |
+ \tau^{n} \frac{1}{\Delta r} \delta_i w \right) |
636 |
\end{eqnarray} |
\end{eqnarray} |
666 |
|
|
667 |
|
|
668 |
\section{Comparison of advection schemes} |
\section{Comparison of advection schemes} |
669 |
|
\label{sect:tracer_advection_schemes} |
670 |
|
\begin{rawhtml} |
671 |
|
<!-- CMIREDIR:comparison_of_advection_schemes: --> |
672 |
|
\end{rawhtml} |
673 |
|
|
674 |
|
\begin{table}[htb] |
675 |
|
\centering |
676 |
|
\begin{tabular}[htb]{|l|c|c|c|c|l|} |
677 |
|
\hline |
678 |
|
Advection Scheme & code & use & use Multi- & Stencil & comments \\ |
679 |
|
& & A.B. & dimension & (1 dim) & \\ |
680 |
|
\hline \hline |
681 |
|
$1^{rst}$order upwind & 1 & No & Yes & 3 pts & linear/$\tau$, non-linear/v\\ |
682 |
|
\hline |
683 |
|
centered $2^{nd}$order & 2 & Yes & No & 3 pts & linear \\ |
684 |
|
\hline |
685 |
|
$3^{rd}$order upwind & 3 & Yes & No & 5 pts & linear/$\tau$\\ |
686 |
|
\hline |
687 |
|
centered $4^{th}$order & 4 & Yes & No & 5 pts & linear \\ |
688 |
|
\hline \hline |
689 |
|
$2^{nd}$order DST (Lax-Wendroff) & 20 & |
690 |
|
No & Yes & 3 pts & linear/$\tau$, non-linear/v\\ |
691 |
|
\hline |
692 |
|
$3^{rd}$order DST & 30 & No & Yes & 5 pts & linear/$\tau$, non-linear/v\\ |
693 |
|
\hline \hline |
694 |
|
$2^{nd}$order Flux Limiters & 77 & No & Yes & 5 pts & non-linear \\ |
695 |
|
\hline |
696 |
|
$3^{nd}$order DST Flux limiter & 33 & No & Yes & 5 pts & non-linear \\ |
697 |
|
\hline |
698 |
|
\end{tabular} |
699 |
|
\caption{Summary of the different advection schemes available in MITgcm. |
700 |
|
``A.B.'' stands for Adams-Bashforth and ``DST'' for direct space time. |
701 |
|
The code corresponds to the number used to select the corresponding |
702 |
|
advection scheme in the parameter file (e.g., {\bf tempAdvScheme}=3 in |
703 |
|
file {\em data} selects the $3^{rd}$ order upwind advection scheme |
704 |
|
for temperature). |
705 |
|
} |
706 |
|
\label{tab:advectionShemes_summary} |
707 |
|
\end{table} |
708 |
|
|
709 |
|
|
710 |
Figs.~\ref{fig:advect-2d-lo-diag}, \ref{fig:advect-2d-mid-diag} and |
Figs.~\ref{fig:advect-2d-lo-diag}, \ref{fig:advect-2d-mid-diag} and |
711 |
\ref{fig:advect-2d-hi-diag} show solutions to a simple diagonal |
\ref{fig:advect-2d-hi-diag} show solutions to a simple diagonal |