/[MITgcm]/manual/s_algorithm/text/tracer.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/tracer.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.17 by jmc, Thu Oct 14 19:53:04 2004 UTC revision 1.27 by heimbach, Wed Oct 26 17:30:23 2016 UTC
# Line 2  Line 2 
2  % $Name$  % $Name$
3    
4  \section{Tracer equations}  \section{Tracer equations}
5  \label{sect:tracer_equations}  \label{sec:tracer_equations}
6    \begin{rawhtml}
7    <!-- CMIREDIR:tracer_equations: -->
8    \end{rawhtml}
9    
10  The basic discretization used for the tracer equations is the second  The basic discretization used for the tracer equations is the second
11  order piece-wise constant finite volume form of the forced  order piece-wise constant finite volume form of the forced
# Line 15  part of the tracer equations and the var Line 18  part of the tracer equations and the var
18  described here.  described here.
19    
20  \subsection{Time-stepping of tracers: ABII}  \subsection{Time-stepping of tracers: ABII}
21  \label{sect:tracer_equations_abII}  \label{sec:tracer_equations_abII}
22    \begin{rawhtml}
23    <!-- CMIREDIR:tracer_equations_abII: -->
24    \end{rawhtml}
25    
26  The default advection scheme is the centered second order method which  The default advection scheme is the centered second order method which
27  requires a second order or quasi-second order time-stepping scheme to  requires a second order or quasi-second order time-stepping scheme to
# Line 123  the forward method. Line 129  the forward method.
129    
130    
131  \section{Linear advection schemes}  \section{Linear advection schemes}
132  \label{sect:tracer-advection}  \label{sec:tracer-advection}
133  \begin{rawhtml}  \begin{rawhtml}
134  <!-- CMIREDIR:linear_advection_schemes: -->  <!-- CMIREDIR:linear_advection_schemes: -->
135  \end{rawhtml}  \end{rawhtml}
136    
137  \begin{figure}  \begin{figure}
138  \resizebox{5.5in}{!}{\includegraphics{part2/advect-1d-lo.eps}}  \resizebox{5.5in}{!}{\includegraphics{s_algorithm/figs/advect-1d-lo.eps}}
139  \caption{  \caption{
140  Comparison of 1-D advection schemes. Courant number is 0.05 with 60  Comparison of 1-D advection schemes. Courant number is 0.05 with 60
141  points and solutions are shown for T=1 (one complete period).  points and solutions are shown for T=1 (one complete period).
# Line 147  $\mu=c/(1-c)$. Line 153  $\mu=c/(1-c)$.
153  \end{figure}  \end{figure}
154    
155  \begin{figure}  \begin{figure}
156  \resizebox{5.5in}{!}{\includegraphics{part2/advect-1d-hi.eps}}  \resizebox{5.5in}{!}{\includegraphics{s_algorithm/figs/advect-1d-hi.eps}}
157  \caption{  \caption{
158  Comparison of 1-D advection schemes. Courant number is 0.89 with 60  Comparison of 1-D advection schemes. Courant number is 0.89 with 60
159  points and solutions are shown for T=1 (one complete period).  points and solutions are shown for T=1 (one complete period).
# Line 353  if the limiter is set to zero. Line 359  if the limiter is set to zero.
359    
360    
361  \section{Non-linear advection schemes}  \section{Non-linear advection schemes}
362    \label{sec:non-linear_advection_schemes}
363  \begin{rawhtml}  \begin{rawhtml}
364  <!-- CMIREDIR:non-linear_advection_schemes: -->  <!-- CMIREDIR:non-linear_advection_schemes: -->
365  \end{rawhtml}  \end{rawhtml}
# Line 543  $\tau$: {\bf tracer} (argument) Line 550  $\tau$: {\bf tracer} (argument)
550  \subsection{Multi-dimensional advection}  \subsection{Multi-dimensional advection}
551    
552  \begin{figure}  \begin{figure}
553  \resizebox{5.5in}{!}{\includegraphics{part2/advect-2d-lo-diag.eps}}  \resizebox{5.5in}{!}{\includegraphics{s_algorithm/figs/advect-2d-lo-diag.eps}}
554  \caption{  \caption{
555  Comparison of advection schemes in two dimensions; diagonal advection  Comparison of advection schemes in two dimensions; diagonal advection
556  of a resolved Gaussian feature. Courant number is 0.01 with  of a resolved Gaussian feature. Courant number is 0.01 with
# Line 564  lines). Line 571  lines).
571  \end{figure}  \end{figure}
572    
573  \begin{figure}  \begin{figure}
574  \resizebox{5.5in}{!}{\includegraphics{part2/advect-2d-mid-diag.eps}}  \resizebox{5.5in}{!}{\includegraphics{s_algorithm/figs/advect-2d-mid-diag.eps}}
575  \caption{  \caption{
576  Comparison of advection schemes in two dimensions; diagonal advection  Comparison of advection schemes in two dimensions; diagonal advection
577  of a resolved Gaussian feature. Courant number is 0.27 with  of a resolved Gaussian feature. Courant number is 0.27 with
# Line 585  lines). Line 592  lines).
592  \end{figure}  \end{figure}
593    
594  \begin{figure}  \begin{figure}
595  \resizebox{5.5in}{!}{\includegraphics{part2/advect-2d-hi-diag.eps}}  \resizebox{5.5in}{!}{\includegraphics{s_algorithm/figs/advect-2d-hi-diag.eps}}
596  \caption{  \caption{
597  Comparison of advection schemes in two dimensions; diagonal advection  Comparison of advection schemes in two dimensions; diagonal advection
598  of a resolved Gaussian feature. Courant number is 0.47 with  of a resolved Gaussian feature. Courant number is 0.47 with
# Line 621  as if in one dimension: Line 628  as if in one dimension:
628  \tau^{n+1/3} & = & \tau^{n}  \tau^{n+1/3} & = & \tau^{n}
629  - \Delta t \left( \frac{1}{\Delta x} \delta_i F^x(\tau^{n})  - \Delta t \left( \frac{1}{\Delta x} \delta_i F^x(\tau^{n})
630             + \tau^{n} \frac{1}{\Delta x} \delta_i u \right) \\             + \tau^{n} \frac{1}{\Delta x} \delta_i u \right) \\
631  \tau^{n+2/3} & = & \tau^{n}  \tau^{n+2/3} & = & \tau^{n+1/3}
632  - \Delta t \left( \frac{1}{\Delta y} \delta_j F^y(\tau^{n+1/3})  - \Delta t \left( \frac{1}{\Delta y} \delta_j F^y(\tau^{n+1/3})
633             + \tau^{n} \frac{1}{\Delta y} \delta_i v \right) \\             + \tau^{n} \frac{1}{\Delta y} \delta_i v \right) \\
634  \tau^{n+3/3} & = & \tau^{n}  \tau^{n+3/3} & = & \tau^{n+2/3}
635  - \Delta t \left( \frac{1}{\Delta r} \delta_k F^x(\tau^{n+2/3})  - \Delta t \left( \frac{1}{\Delta r} \delta_k F^x(\tau^{n+2/3})
636             + \tau^{n} \frac{1}{\Delta r} \delta_i w \right)             + \tau^{n} \frac{1}{\Delta r} \delta_i w \right)
637  \end{eqnarray}  \end{eqnarray}
# Line 658  $W$: {\bf rTrans} (local) Line 665  $W$: {\bf rTrans} (local)
665    
666  \end{minipage} }  \end{minipage} }
667    
668    \begin{figure}
669    \resizebox{3.5in}{!}{\includegraphics{s_algorithm/figs/multiDim_CS.eps}}
670    \caption{Muti-dimensional advection time-stepping with Cubed-Sphere topology
671    \label{fig:advect-multidim_cs}
672    }
673    \end{figure}
674    
675  \section{Comparison of advection schemes}  \section{Comparison of advection schemes}
676    \label{sec:tracer_advection_schemes}
677    \begin{rawhtml}
678    <!-- CMIREDIR:comparison_of_advection_schemes: -->
679    \end{rawhtml}
680    
681  \begin{table}[htb]  \begin{table}[htb]
682  \centering  \centering
683    {\small
684   \begin{tabular}[htb]{|l|c|c|c|c|l|}   \begin{tabular}[htb]{|l|c|c|c|c|l|}
685     \hline     \hline
686     Advection Scheme & code & use  & use Multi- & Stencil & comments \\     Advection Scheme & code & use  & use Multi- & Stencil & comments \\
687                      &      & A.B. & dimension & (1 dim) & \\                      &      & A.B. & dimension & (1 dim) & \\
688     \hline \hline     \hline \hline
689       $1^{rst}$order upwind  & 1 &  No & Yes & 3 pts & linear/$\tau$, non-linear/v\\
690       \hline
691     centered $2^{nd}$order & 2 &  Yes & No & 3 pts & linear \\     centered $2^{nd}$order & 2 &  Yes & No & 3 pts & linear \\
692     \hline     \hline
693     $3^{rd}$order upwind   & 3 &  Yes & No & 5 pts & linear/tracer\\     $3^{rd}$order upwind   & 3 &  Yes & No & 5 pts & linear/$\tau$\\
694     \hline     \hline
695     centered $4^{th}$order & 4 &  Yes & No & 5 pts & linear \\     centered $4^{th}$order & 4 &  Yes & No & 5 pts & linear \\
696     \hline \hline     \hline \hline
697  %  Lax-Wendroff       & 10 &  No & Yes & 3 pts & linear/tracer, non-linear/flow\\     $2^{nd}$order DST (Lax-Wendroff)  & 20 &
698  %  \hline                           No & Yes & 3 pts & linear/$\tau$, non-linear/v\\
699     $3^{rd}$order DST & 30 &  No & Yes & 5 pts & linear/tracer, non-linear/flow\\     \hline
700       $3^{rd}$order DST & 30 &  No & Yes & 5 pts & linear/$\tau$, non-linear/v\\
701       \hline
702       $2^{nd}$order-moment Prather & 80 & No & Yes & ~ & ~ \\
703     \hline \hline     \hline \hline
704     $2^{nd}$order Flux Limiters & 77 &  No & Yes & 5 pts & non-linear \\     $2^{nd}$order Flux Limiters & 77 &  No & Yes & 5 pts & non-linear \\
705     \hline     \hline
706     $3^{nd}$order DST Flux limiter & 33 &  No & Yes & 5 pts & non-linear \\     $3^{nd}$order DST Flux limiter & 33 &  No & Yes & 5 pts & non-linear \\
707     \hline     \hline
708       $2^{nd}$order-moment Prather w. limiter & 81 & No & Yes & ~ & ~ \\
709       \hline
710       piecewise parabolic w. ``null'' limiter & 40 & No & Yes & ~ & ~ \\
711       \hline
712       piecewise parabolic w. ``mono'' limiter & 41 & No & Yes & ~ & ~ \\
713       \hline
714       piecewise quartic w. ``null'' limiter & 50 & No & Yes & ~ & ~ \\
715       \hline
716       piecewise quartic w. ``mono'' limiter & 51 & No & Yes & ~ & ~ \\
717       \hline
718       piecewise quartic w. ``weno'' limiter & 52 & No & Yes & ~ & ~ \\
719       \hline
720       $7^{nd}$order one-step method & 7 & No & Yes & ~ & ~ \\
721       with Monotonicity Preserving Limiter & ~ & ~ & ~ & ~ & ~ \\
722       \hline
723      
724   \end{tabular}   \end{tabular}
725     }
726   \caption{Summary of the different advection schemes available in MITgcm.   \caption{Summary of the different advection schemes available in MITgcm.
727            ``A.B.'' stands for Adams-Bashforth and ``DST'' for direct space time.            ``A.B.'' stands for Adams-Bashforth and ``DST'' for direct space time.
728            The code corresponds to the number used to select the corresponding            The code corresponds to the number used to select the corresponding
729            advection scheme in the parameter file (e.g., {\em tempAdvScheme=3} in            advection scheme in the parameter file (e.g., {\bf tempAdvScheme}=3 in
730            file {\em data} selects the $3^{rd}$ order upwind advection scheme            file {\em data} selects the $3^{rd}$ order upwind advection scheme
731            for temperature).            for temperature).
732     }     }

Legend:
Removed from v.1.17  
changed lines
  Added in v.1.27

  ViewVC Help
Powered by ViewVC 1.1.22