/[MITgcm]/manual/s_algorithm/text/tracer.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/tracer.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.3 by adcroft, Tue Sep 25 20:13:42 2001 UTC revision 1.15 by afe, Tue Mar 23 16:47:04 2004 UTC
# Line 2  Line 2 
2  % $Name$  % $Name$
3    
4  \section{Tracer equations}  \section{Tracer equations}
5    \label{sect:tracer_equations}
6    
7  The basic discretization used for the tracer equations is the second  The basic discretization used for the tracer equations is the second
8  order piece-wise constant finite volume form of the forced  order piece-wise constant finite volume form of the forced
9  advection-diussion equations. There are many alternatives to second  advection-diffusion equations. There are many alternatives to second
10  order method for advection and alternative parameterizations for the  order method for advection and alternative parameterizations for the
11  sub-grid scale processes. The Gent-McWilliams eddy parameterization,  sub-grid scale processes. The Gent-McWilliams eddy parameterization,
12  KPP mixing scheme and PV flux parameterization are all dealt with in  KPP mixing scheme and PV flux parameterization are all dealt with in
# Line 14  part of the tracer equations and the var Line 15  part of the tracer equations and the var
15  described here.  described here.
16    
17  \subsection{Time-stepping of tracers: ABII}  \subsection{Time-stepping of tracers: ABII}
18    \label{sect:tracer_equations_abII}
19    
20  The default advection scheme is the centered second order method which  The default advection scheme is the centered second order method which
21  requires a second order or quasi-second order time-stepping scheme to  requires a second order or quasi-second order time-stepping scheme to
# Line 41  only affects the surface layer since the Line 43  only affects the surface layer since the
43  everywhere else. This term is therefore referred to as the surface  everywhere else. This term is therefore referred to as the surface
44  correction term. Global conservation is not possible using the  correction term. Global conservation is not possible using the
45  flux-form (as here) and a linearized free-surface  flux-form (as here) and a linearized free-surface
46  (\cite{Griffies00,Campin02}).  (\cite{griffies:00,campin:02}).
47    
48  The continuity equation can be recovered by setting  The continuity equation can be recovered by setting
49  $G_{diff}=G_{forc}=0$ and $\tau=1$.  $G_{diff}=G_{forc}=0$ and $\tau=1$.
50    
51  The driver routine that calls the routines to calculate tendancies are  The driver routine that calls the routines to calculate tendencies are
52  {\em S/R CALC\_GT} and {\em S/R CALC\_GS} for temperature and salt  {\em S/R CALC\_GT} and {\em S/R CALC\_GS} for temperature and salt
53  (moisture), respectively. These in turn call a generic advection  (moisture), respectively. These in turn call a generic advection
54  diffusion routine {\em S/R GAD\_CALC\_RHS} that is called with the  diffusion routine {\em S/R GAD\_CALC\_RHS} that is called with the
55  flow field and relevent tracer as arguments and returns the collective  flow field and relevant tracer as arguments and returns the collective
56  tendancy due to advection and diffusion. Forcing is add subsequently  tendency due to advection and diffusion. Forcing is add subsequently
57  in {\em S/R CALC\_GT} or {\em S/R CALC\_GS} to the same tendancy  in {\em S/R CALC\_GT} or {\em S/R CALC\_GS} to the same tendency
58  array.  array.
59    
60  \fbox{ \begin{minipage}{4.75in}  \fbox{ \begin{minipage}{4.75in}
# Line 66  $F_r$: {\bf fVerT} (argument) Line 68  $F_r$: {\bf fVerT} (argument)
68    
69  \end{minipage} }  \end{minipage} }
70    
71    The space and time discretization are treated separately (method of
72  The space and time discretizations are treated seperately (method of  lines). Tendencies are calculated at time levels $n$ and $n-1$ and
73  lines). The Adams-Bashforth time discretization reads:  extrapolated to $n+1/2$ using the Adams-Bashforth method:
74  \marginpar{$\epsilon$: {\bf AB\_eps}}  \marginpar{$\epsilon$: {\bf AB\_eps}}
 \marginpar{$\Delta t$: {\bf deltaTtracer}}  
75  \begin{equation}  \begin{equation}
76  \tau^{(n+1)} = \tau^{(n)} + \Delta t \left(  G^{(n+1/2)} =
77  (\frac{3}{2} + \epsilon) G^{(n)} - (\frac{1}{2} + \epsilon) G^{(n-1)}  (\frac{3}{2} + \epsilon) G^{(n)} - (\frac{1}{2} + \epsilon) G^{(n-1)}
 \right)  
78  \end{equation}  \end{equation}
79  where $G^{(n)} = G_{adv}^\tau + G_{diff}^\tau + G_{src}^\tau$ at time  where $G^{(n)} = G_{adv}^\tau + G_{diff}^\tau + G_{src}^\tau$ at time
80  step $n$.  step $n$. The tendency at $n-1$ is not re-calculated but rather the
81    tendency at $n$ is stored in a global array for later re-use.
82    
83  Strictly speaking the ABII scheme should be applied only to the  \fbox{ \begin{minipage}{4.75in}
84  advection terms. However, this scheme is only used in conjuction with  {\em S/R ADAMS\_BASHFORTH2} ({\em model/src/adams\_bashforth2.F})
85  the standard second, third and fourth order advection  
86  schemes. Selection of any other advection scheme disables  $G^{(n+1/2)}$: {\bf gTracer} (argument on exit)
87  Adams-Bashforth for tracers so that explicit diffusion and forcing use  
88  the forward method.  $G^{(n)}$: {\bf gTracer} (argument on entry)
89    
90    $G^{(n-1)}$: {\bf gTrNm1} (argument)
91    
92    $\epsilon$: {\bf ABeps} (PARAMS.h)
93    
94    \end{minipage} }
95    
96    The tracers are stepped forward in time using the extrapolated tendency:
97    \begin{equation}
98    \tau^{(n+1)} = \tau^{(n)} + \Delta t G^{(n+1/2)}
99    \end{equation}
100    \marginpar{$\Delta t$: {\bf deltaTtracer}}
101    
102  \fbox{ \begin{minipage}{4.75in}  \fbox{ \begin{minipage}{4.75in}
103  {\em S/R TIMESTEP\_TRACER} ({\em model/src/timestep\_tracer.F})  {\em S/R TIMESTEP\_TRACER} ({\em model/src/timestep\_tracer.F})
104    
105  $\tau$: {\bf tracer} (argument)  $\tau^{(n+1)}$: {\bf gTracer} (argument on exit)
106    
107  $G^{(n)}$: {\bf gTracer} (argument)  $\tau^{(n)}$: {\bf tracer} (argument on entry)
108    
109  $G^{(n-1)}$: {\bf gTrNm1} (argument)  $G^{(n+1/2)}$: {\bf gTracer} (argument)
110    
111  $\Delta t$: {\bf deltaTtracer} (PARAMS.h)  $\Delta t$: {\bf deltaTtracer} (PARAMS.h)
112    
113  \end{minipage} }  \end{minipage} }
114    
115    Strictly speaking the ABII scheme should be applied only to the
116    advection terms. However, this scheme is only used in conjunction with
117    the standard second, third and fourth order advection
118    schemes. Selection of any other advection scheme disables
119    Adams-Bashforth for tracers so that explicit diffusion and forcing use
120    the forward method.
121    
122    
123    
124    
125    \section{Linear advection schemes}
126    \label{sect:tracer-advection}
127    \begin{rawhtml}
128    <!-- CMIREDIR:linear_advection_schemes: -->
129    \end{rawhtml}
130    
131  \begin{figure}  \begin{figure}
132  \resizebox{5.5in}{!}{\includegraphics{part2/advect-1d-lo.eps}}  \resizebox{5.5in}{!}{\includegraphics{part2/advect-1d-lo.eps}}
133  \caption{  \caption{
# Line 136  $\mu=c/(1-c)$. Line 165  $\mu=c/(1-c)$.
165  }  }
166  \end{figure}  \end{figure}
167    
 \section{Linear advection schemes}  
   
168  The advection schemes known as centered second order, centered fourth  The advection schemes known as centered second order, centered fourth
169  order, first order upwind and upwind biased third order are known as  order, first order upwind and upwind biased third order are known as
170  linear advection schemes because the coefficient for interpolation of  linear advection schemes because the coefficient for interpolation of
# Line 148  commonly used in the field and most fami Line 175  commonly used in the field and most fami
175  \subsection{Centered second order advection-diffusion}  \subsection{Centered second order advection-diffusion}
176    
177  The basic discretization, centered second order, is the default. It is  The basic discretization, centered second order, is the default. It is
178  designed to be consistant with the continuity equation to facilitate  designed to be consistent with the continuity equation to facilitate
179  conservation properties analogous to the continuum. However, centered  conservation properties analogous to the continuum. However, centered
180  second order advection is notoriously noisey and must be used in  second order advection is notoriously noisy and must be used in
181  conjuction with some finite amount of diffusion to produce a sensible  conjunction with some finite amount of diffusion to produce a sensible
182  solution.  solution.
183    
184  The advection operator is discretized:  The advection operator is discretized:
# Line 177  W & = & {\cal A}_c w Line 204  W & = & {\cal A}_c w
204    
205  For non-divergent flow, this discretization can be shown to conserve  For non-divergent flow, this discretization can be shown to conserve
206  the tracer both locally and globally and to globally conserve tracer  the tracer both locally and globally and to globally conserve tracer
207  variance, $\tau^2$. The proof is given in \cite{Adcroft95,Adcroft97}.  variance, $\tau^2$. The proof is given in \cite{adcroft:95,adcroft:97}.
208    
209  \fbox{ \begin{minipage}{4.75in}  \fbox{ \begin{minipage}{4.75in}
210  {\em S/R GAD\_C2\_ADV\_X} ({\em gad\_c2\_adv\_x.F})  {\em S/R GAD\_C2\_ADV\_X} ({\em gad\_c2\_adv\_x.F})
# Line 225  F_r & = & W \overline{\tau - \frac{1}{6} Line 252  F_r & = & W \overline{\tau - \frac{1}{6}
252  \end{eqnarray}  \end{eqnarray}
253    
254  At boundaries, $\delta_{\hat{n}} \tau$ is set to zero allowing  At boundaries, $\delta_{\hat{n}} \tau$ is set to zero allowing
255  $\delta_{nn}$ to be evaluated. We are currently examing the accuracy  $\delta_{nn}$ to be evaluated. We are currently examine the accuracy
256  of this boundary condition and the effect on the solution.  of this boundary condition and the effect on the solution.
257    
258    \fbox{ \begin{minipage}{4.75in}
259    {\em S/R GAD\_U3\_ADV\_X} ({\em gad\_u3\_adv\_x.F})
260    
261    $F_x$: {\bf uT} (argument)
262    
263    $U$: {\bf uTrans} (argument)
264    
265    $\tau$: {\bf tracer} (argument)
266    
267    {\em S/R GAD\_U3\_ADV\_Y} ({\em gad\_u3\_adv\_y.F})
268    
269    $F_y$: {\bf vT} (argument)
270    
271    $V$: {\bf vTrans} (argument)
272    
273    $\tau$: {\bf tracer} (argument)
274    
275    {\em S/R GAD\_U3\_ADV\_R} ({\em gad\_u3\_adv\_r.F})
276    
277    $F_r$: {\bf wT} (argument)
278    
279    $W$: {\bf rTrans} (argument)
280    
281    $\tau$: {\bf tracer} (argument)
282    
283    \end{minipage} }
284    
285  \subsection{Centered fourth order advection}  \subsection{Centered fourth order advection}
286    
287  Centered fourth order advection is formally the most accurate scheme  Centered fourth order advection is formally the most accurate scheme
288  we have implemented and can be used to great effect in high resolution  we have implemented and can be used to great effect in high resolution
289  simultation where dynamical scales are well resolved. However, the  simulation where dynamical scales are well resolved. However, the
290  scheme is noisey like the centered second order method and so must be  scheme is noisy like the centered second order method and so must be
291  used with some finite amount of diffusion. Bi-harmonic is recommended  used with some finite amount of diffusion. Bi-harmonic is recommended
292  since it is more scale selective and less likely to diffuse away the  since it is more scale selective and less likely to diffuse away the
293  well resolved gradient the fourth order scheme worked so hard to  well resolved gradient the fourth order scheme worked so hard to
# Line 248  F_r & = & W \overline{\tau - \frac{1}{6} Line 301  F_r & = & W \overline{\tau - \frac{1}{6}
301  \end{eqnarray}  \end{eqnarray}
302    
303  As for the third order scheme, the best discretization near boundaries  As for the third order scheme, the best discretization near boundaries
304  is under investigation but currenlty $\delta_i \tau=0$ on a boundary.  is under investigation but currently $\delta_i \tau=0$ on a boundary.
305    
306    \fbox{ \begin{minipage}{4.75in}
307    {\em S/R GAD\_C4\_ADV\_X} ({\em gad\_c4\_adv\_x.F})
308    
309    $F_x$: {\bf uT} (argument)
310    
311    $U$: {\bf uTrans} (argument)
312    
313    $\tau$: {\bf tracer} (argument)
314    
315    {\em S/R GAD\_C4\_ADV\_Y} ({\em gad\_c4\_adv\_y.F})
316    
317    $F_y$: {\bf vT} (argument)
318    
319    $V$: {\bf vTrans} (argument)
320    
321    $\tau$: {\bf tracer} (argument)
322    
323    {\em S/R GAD\_C4\_ADV\_R} ({\em gad\_c4\_adv\_r.F})
324    
325    $F_r$: {\bf wT} (argument)
326    
327    $W$: {\bf rTrans} (argument)
328    
329    $\tau$: {\bf tracer} (argument)
330    
331    \end{minipage} }
332    
333    
334  \subsection{First order upwind advection}  \subsection{First order upwind advection}
335    
# Line 310  r = \frac{ \tau_{i-1} - \tau_{i-2} }{ \t Line 391  r = \frac{ \tau_{i-1} - \tau_{i-2} }{ \t
391  r = \frac{ \tau_{i+1} - \tau_{i} }{ \tau_{i} - \tau_{i-1} } & \forall & u < 0  r = \frac{ \tau_{i+1} - \tau_{i} }{ \tau_{i} - \tau_{i-1} } & \forall & u < 0
392  \end{eqnarray}  \end{eqnarray}
393  as it's argument. There are many choices of limiter function but we  as it's argument. There are many choices of limiter function but we
394  only provide the Superbee limiter \cite{Roe85}:  only provide the Superbee limiter \cite{roe:85}:
395  \begin{equation}  \begin{equation}
396  \psi(r) = \max[0,\min[1,2r],\min[2,r]]  \psi(r) = \max[0,\min[1,2r],\min[2,r]]
397  \end{equation}  \end{equation}
398    
399    \fbox{ \begin{minipage}{4.75in}
400    {\em S/R GAD\_FLUXLIMIT\_ADV\_X} ({\em gad\_fluxlimit\_adv\_x.F})
401    
402    $F_x$: {\bf uT} (argument)
403    
404    $U$: {\bf uTrans} (argument)
405    
406    $\tau$: {\bf tracer} (argument)
407    
408    {\em S/R GAD\_FLUXLIMIT\_ADV\_Y} ({\em gad\_fluxlimit\_adv\_y.F})
409    
410    $F_y$: {\bf vT} (argument)
411    
412    $V$: {\bf vTrans} (argument)
413    
414    $\tau$: {\bf tracer} (argument)
415    
416    {\em S/R GAD\_FLUXLIMIT\_ADV\_R} ({\em gad\_fluxlimit\_adv\_r.F})
417    
418    $F_r$: {\bf wT} (argument)
419    
420    $W$: {\bf rTrans} (argument)
421    
422    $\tau$: {\bf tracer} (argument)
423    
424    \end{minipage} }
425    
426    
427  \subsection{Third order direct space time}  \subsection{Third order direct space time}
428    
429  The direct-space-time method deals with space and time discretization  The direct-space-time method deals with space and time discretization
430  together (other methods that treat space and time seperately are known  together (other methods that treat space and time separately are known
431  collectively as the ``Method of Lines''). The Lax-Wendroff scheme  collectively as the ``Method of Lines''). The Lax-Wendroff scheme
432  falls into this category; it adds sufficient diffusion to a second  falls into this category; it adds sufficient diffusion to a second
433  order flux that the forward-in-time method is stable. The upwind  order flux that the forward-in-time method is stable. The upwind
# Line 337  where Line 445  where
445  d_1 & = & \frac{1}{6} ( 2 - |c| ) ( 1 - |c| ) \\  d_1 & = & \frac{1}{6} ( 2 - |c| ) ( 1 - |c| ) \\
446  d_2 & = & \frac{1}{6} ( 1 - |c| ) ( 1 + |c| )  d_2 & = & \frac{1}{6} ( 1 - |c| ) ( 1 + |c| )
447  \end{eqnarray}  \end{eqnarray}
448  The coefficients $d_0$ and $d_1$ approach $1/3$ and $1/6$ repectively  The coefficients $d_0$ and $d_1$ approach $1/3$ and $1/6$ respectively
449  as the Courant number, $c$, vanishes. In this limit, the conventional  as the Courant number, $c$, vanishes. In this limit, the conventional
450  third order upwind method is recovered. For finite Courant number, the  third order upwind method is recovered. For finite Courant number, the
451  deviations from the linear method are analogous to the diffusion added  deviations from the linear method are analogous to the diffusion added
# Line 345  to centered second order advection in th Line 453  to centered second order advection in th
453    
454  The DST3 method described above must be used in a forward-in-time  The DST3 method described above must be used in a forward-in-time
455  manner and is stable for $0 \le |c| \le 1$. Although the scheme  manner and is stable for $0 \le |c| \le 1$. Although the scheme
456  appears to be forward-in-time, it is in fact second order in time and  appears to be forward-in-time, it is in fact third order in time and
457  the accuracy increases with the Courant number! For low Courant  the accuracy increases with the Courant number! For low Courant
458  number, DST3 produces very similar results (indistinguishable in  number, DST3 produces very similar results (indistinguishable in
459  Fig.~\ref{fig:advect-1d-lo}) to the linear third order method but for  Fig.~\ref{fig:advect-1d-lo}) to the linear third order method but for
# Line 353  large Courant number, where the linear u Line 461  large Courant number, where the linear u
461  unstable, the scheme is extremely accurate  unstable, the scheme is extremely accurate
462  (Fig.~\ref{fig:advect-1d-hi}) with only minor overshoots.  (Fig.~\ref{fig:advect-1d-hi}) with only minor overshoots.
463    
464    \fbox{ \begin{minipage}{4.75in}
465    {\em S/R GAD\_DST3\_ADV\_X} ({\em gad\_dst3\_adv\_x.F})
466    
467    $F_x$: {\bf uT} (argument)
468    
469    $U$: {\bf uTrans} (argument)
470    
471    $\tau$: {\bf tracer} (argument)
472    
473    {\em S/R GAD\_DST3\_ADV\_Y} ({\em gad\_dst3\_adv\_y.F})
474    
475    $F_y$: {\bf vT} (argument)
476    
477    $V$: {\bf vTrans} (argument)
478    
479    $\tau$: {\bf tracer} (argument)
480    
481    {\em S/R GAD\_DST3\_ADV\_R} ({\em gad\_dst3\_adv\_r.F})
482    
483    $F_r$: {\bf wT} (argument)
484    
485    $W$: {\bf rTrans} (argument)
486    
487    $\tau$: {\bf tracer} (argument)
488    
489    \end{minipage} }
490    
491    
492  \subsection{Third order direct space time with flux limiting}  \subsection{Third order direct space time with flux limiting}
493    
494  The overshoots in the DST3 method can be controlled with a flux limiter.  The overshoots in the DST3 method can be controlled with a flux limiter.
# Line 373  and the limiter is the Sweby limiter: Line 509  and the limiter is the Sweby limiter:
509  \psi(r) = \max[0, \min[\min(1,d_0+d_1r],\frac{1-c}{c}r ]]  \psi(r) = \max[0, \min[\min(1,d_0+d_1r],\frac{1-c}{c}r ]]
510  \end{equation}  \end{equation}
511    
512    \fbox{ \begin{minipage}{4.75in}
513    {\em S/R GAD\_DST3FL\_ADV\_X} ({\em gad\_dst3\_adv\_x.F})
514    
515    $F_x$: {\bf uT} (argument)
516    
517    $U$: {\bf uTrans} (argument)
518    
519    $\tau$: {\bf tracer} (argument)
520    
521    {\em S/R GAD\_DST3FL\_ADV\_Y} ({\em gad\_dst3\_adv\_y.F})
522    
523    $F_y$: {\bf vT} (argument)
524    
525    $V$: {\bf vTrans} (argument)
526    
527    $\tau$: {\bf tracer} (argument)
528    
529    {\em S/R GAD\_DST3FL\_ADV\_R} ({\em gad\_dst3\_adv\_r.F})
530    
531    $F_r$: {\bf wT} (argument)
532    
533    $W$: {\bf rTrans} (argument)
534    
535    $\tau$: {\bf tracer} (argument)
536    
537    \end{minipage} }
538    
539    
540  \subsection{Multi-dimensional advection}  \subsection{Multi-dimensional advection}
541    
542  In many of the aforementioned advection schemes the behaviour in  \begin{figure}
543    \resizebox{5.5in}{!}{\includegraphics{part2/advect-2d-lo-diag.eps}}
544    \caption{
545    Comparison of advection schemes in two dimensions; diagonal advection
546    of a resolved Gaussian feature. Courant number is 0.01 with
547    30$\times$30 points and solutions are shown for T=1/2. White lines
548    indicate zero crossing (ie. the presence of false minima).  The left
549    column shows the second order schemes; top) centered second order with
550    Adams-Bashforth, middle) Lax-Wendroff and bottom) Superbee flux
551    limited. The middle column shows the third order schemes; top) upwind
552    biased third order with Adams-Bashforth, middle) third order direct
553    space-time method and bottom) the same with flux limiting. The top
554    right panel shows the centered fourth order scheme with
555    Adams-Bashforth and right middle panel shows a fourth order variant on
556    the DST method. Bottom right panel shows the Superbee flux limiter
557    (second order) applied independently in each direction (method of
558    lines).
559    \label{fig:advect-2d-lo-diag}
560    }
561    \end{figure}
562    
563    \begin{figure}
564    \resizebox{5.5in}{!}{\includegraphics{part2/advect-2d-mid-diag.eps}}
565    \caption{
566    Comparison of advection schemes in two dimensions; diagonal advection
567    of a resolved Gaussian feature. Courant number is 0.27 with
568    30$\times$30 points and solutions are shown for T=1/2. White lines
569    indicate zero crossing (ie. the presence of false minima).  The left
570    column shows the second order schemes; top) centered second order with
571    Adams-Bashforth, middle) Lax-Wendroff and bottom) Superbee flux
572    limited. The middle column shows the third order schemes; top) upwind
573    biased third order with Adams-Bashforth, middle) third order direct
574    space-time method and bottom) the same with flux limiting. The top
575    right panel shows the centered fourth order scheme with
576    Adams-Bashforth and right middle panel shows a fourth order variant on
577    the DST method. Bottom right panel shows the Superbee flux limiter
578    (second order) applied independently in each direction (method of
579    lines).
580    \label{fig:advect-2d-mid-diag}
581    }
582    \end{figure}
583    
584    \begin{figure}
585    \resizebox{5.5in}{!}{\includegraphics{part2/advect-2d-hi-diag.eps}}
586    \caption{
587    Comparison of advection schemes in two dimensions; diagonal advection
588    of a resolved Gaussian feature. Courant number is 0.47 with
589    30$\times$30 points and solutions are shown for T=1/2. White lines
590    indicate zero crossings and initial maximum values (ie. the presence
591    of false extrema).  The left column shows the second order schemes;
592    top) centered second order with Adams-Bashforth, middle) Lax-Wendroff
593    and bottom) Superbee flux limited. The middle column shows the third
594    order schemes; top) upwind biased third order with Adams-Bashforth,
595    middle) third order direct space-time method and bottom) the same with
596    flux limiting. The top right panel shows the centered fourth order
597    scheme with Adams-Bashforth and right middle panel shows a fourth
598    order variant on the DST method. Bottom right panel shows the Superbee
599    flux limiter (second order) applied independently in each direction
600    (method of lines).
601    \label{fig:advect-2d-hi-diag}
602    }
603    \end{figure}
604    
605    
606    
607    In many of the aforementioned advection schemes the behavior in
608  multiple dimensions is not necessarily as good as the one dimensional  multiple dimensions is not necessarily as good as the one dimensional
609  behaviour. For instance, a shape preserving monotonic scheme in one  behavior. For instance, a shape preserving monotonic scheme in one
610  dimension can have severe shape distortion in two dimensions if the  dimension can have severe shape distortion in two dimensions if the
611  two components of horizontal fluxes are treated independently. There  two components of horizontal fluxes are treated independently. There
612  is a large body of literature on the subject dealing with this problem  is a large body of literature on the subject dealing with this problem
# Line 398  as if in one dimension: Line 627  as if in one dimension:
627  \end{eqnarray}  \end{eqnarray}
628    
629  In order to incorporate this method into the general model algorithm,  In order to incorporate this method into the general model algorithm,
630  we compute the effective tendancy rather than update the tracer so  we compute the effective tendency rather than update the tracer so
631  that other terms such as diffusion are using the $n$ time-level and  that other terms such as diffusion are using the $n$ time-level and
632  not the updated $n+3/3$ quantities:  not the updated $n+3/3$ quantities:
633  \begin{equation}  \begin{equation}
# Line 408  So that the over all time-stepping looks Line 637  So that the over all time-stepping looks
637  \begin{equation}  \begin{equation}
638  \tau^{n+1} = \tau^{n} + \Delta t \left( G^{n+1/2}_{adv} + G_{diff}(\tau^{n}) + G^{n}_{forcing} \right)  \tau^{n+1} = \tau^{n} + \Delta t \left( G^{n+1/2}_{adv} + G_{diff}(\tau^{n}) + G^{n}_{forcing} \right)
639  \end{equation}  \end{equation}
640    
641    \fbox{ \begin{minipage}{4.75in}
642    {\em S/R GAD\_ADVECTION} ({\em gad\_advection.F})
643    
644    $\tau$: {\bf Tracer} (argument)
645    
646    $G^{n+1/2}_{adv}$: {\bf Gtracer} (argument)
647    
648    $F_x, F_y, F_r$: {\bf af} (local)
649    
650    $U$: {\bf uTrans} (local)
651    
652    $V$: {\bf vTrans} (local)
653    
654    $W$: {\bf rTrans} (local)
655    
656    \end{minipage} }
657    
658    
659    \section{Comparison of advection schemes}
660    
661    Figs.~\ref{fig:advect-2d-lo-diag}, \ref{fig:advect-2d-mid-diag} and
662    \ref{fig:advect-2d-hi-diag} show solutions to a simple diagonal
663    advection problem using a selection of schemes for low, moderate and
664    high Courant numbers, respectively. The top row shows the linear
665    schemes, integrated with the Adams-Bashforth method. Theses schemes
666    are clearly unstable for the high Courant number and weakly unstable
667    for the moderate Courant number. The presence of false extrema is very
668    apparent for all Courant numbers. The middle row shows solutions
669    obtained with the unlimited but multi-dimensional schemes. These
670    solutions also exhibit false extrema though the pattern now shows
671    symmetry due to the multi-dimensional scheme. Also, the schemes are
672    stable at high Courant number where the linear schemes weren't. The
673    bottom row (left and middle) shows the limited schemes and most
674    obvious is the absence of false extrema. The accuracy and stability of
675    the unlimited non-linear schemes is retained at high Courant number
676    but at low Courant number the tendency is to loose amplitude in sharp
677    peaks due to diffusion. The one dimensional tests shown in
678    Figs.~\ref{fig:advect-1d-lo} and \ref{fig:advect-1d-hi} showed this
679    phenomenon.
680    
681    Finally, the bottom left and right panels use the same advection
682    scheme but the right does not use the multi-dimensional method. At low
683    Courant number this appears to not matter but for moderate Courant
684    number severe distortion of the feature is apparent. Moreover, the
685    stability of the multi-dimensional scheme is determined by the maximum
686    Courant number applied of each dimension while the stability of the
687    method of lines is determined by the sum. Hence, in the high Courant
688    number plot, the scheme is unstable.
689    
690    With many advection schemes implemented in the code two questions
691    arise: ``Which scheme is best?'' and ``Why don't you just offer the
692    best advection scheme?''. Unfortunately, no one advection scheme is
693    ``the best'' for all particular applications and for new applications
694    it is often a matter of trial to determine which is most
695    suitable. Here are some guidelines but these are not the rule;
696    \begin{itemize}
697    \item If you have a coarsely resolved model, using a
698    positive or upwind biased scheme will introduce significant diffusion
699    to the solution and using a centered higher order scheme will
700    introduce more noise. In this case, simplest may be best.
701    \item If you have a high resolution model, using a higher order
702    scheme will give a more accurate solution but scale-selective
703    diffusion might need to be employed. The flux limited methods
704    offer similar accuracy in this regime.
705    \item If your solution has shocks or propagating fronts then a
706    flux limited scheme is almost essential.
707    \item If your time-step is limited by advection, the multi-dimensional
708    non-linear schemes have the most stability (up to Courant number 1).
709    \item If you need to know how much diffusion/dissipation has occurred you
710    will have a lot of trouble figuring it out with a non-linear method.
711    \item The presence of false extrema is non-physical and this alone is the
712    strongest argument for using a positive scheme.
713    \end{itemize}

Legend:
Removed from v.1.3  
changed lines
  Added in v.1.15

  ViewVC Help
Powered by ViewVC 1.1.22