/[MITgcm]/manual/s_algorithm/text/tracer.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/tracer.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.3 by adcroft, Tue Sep 25 20:13:42 2001 UTC revision 1.4 by adcroft, Wed Sep 26 17:00:34 2001 UTC
# Line 66  $F_r$: {\bf fVerT} (argument) Line 66  $F_r$: {\bf fVerT} (argument)
66    
67  \end{minipage} }  \end{minipage} }
68    
   
69  The space and time discretizations are treated seperately (method of  The space and time discretizations are treated seperately (method of
70  lines). The Adams-Bashforth time discretization reads:  lines). Tendancies are calculated at time levels $n$ and $n-1$ and
71    extrapolated to $n+1/2$ using the Adams-Bashforth method:
72  \marginpar{$\epsilon$: {\bf AB\_eps}}  \marginpar{$\epsilon$: {\bf AB\_eps}}
 \marginpar{$\Delta t$: {\bf deltaTtracer}}  
73  \begin{equation}  \begin{equation}
74  \tau^{(n+1)} = \tau^{(n)} + \Delta t \left(  G^{(n+1/2)} =
75  (\frac{3}{2} + \epsilon) G^{(n)} - (\frac{1}{2} + \epsilon) G^{(n-1)}  (\frac{3}{2} + \epsilon) G^{(n)} - (\frac{1}{2} + \epsilon) G^{(n-1)}
 \right)  
76  \end{equation}  \end{equation}
77  where $G^{(n)} = G_{adv}^\tau + G_{diff}^\tau + G_{src}^\tau$ at time  where $G^{(n)} = G_{adv}^\tau + G_{diff}^\tau + G_{src}^\tau$ at time
78  step $n$.  step $n$. The tendancy at $n-1$ is not re-calculated but rather the
79    tendancy at $n$ is stored in a global array for later re-use.
80    
81  Strictly speaking the ABII scheme should be applied only to the  \fbox{ \begin{minipage}{4.75in}
82  advection terms. However, this scheme is only used in conjuction with  {\em S/R ADAMS\_BASHFORTH2} ({\em model/src/adams\_bashforth2.F})
83  the standard second, third and fourth order advection  
84  schemes. Selection of any other advection scheme disables  $G^{(n+1/2)}$: {\bf gTracer} (argument on exit)
85  Adams-Bashforth for tracers so that explicit diffusion and forcing use  
86  the forward method.  $G^{(n)}$: {\bf gTracer} (argument on entry)
87    
88    $G^{(n-1)}$: {\bf gTrNm1} (argument)
89    
90    $\epsilon$: {\bf ABeps} (PARAMS.h)
91    
92    \end{minipage} }
93    
94    The tracers are stepped forward in time using the extrapolated tendancy:
95    \begin{equation}
96    \tau^{(n+1)} = \tau^{(n)} + \Delta t G^{(n+1/2)}
97    \end{equation}
98    \marginpar{$\Delta t$: {\bf deltaTtracer}}
99    
100  \fbox{ \begin{minipage}{4.75in}  \fbox{ \begin{minipage}{4.75in}
101  {\em S/R TIMESTEP\_TRACER} ({\em model/src/timestep\_tracer.F})  {\em S/R TIMESTEP\_TRACER} ({\em model/src/timestep\_tracer.F})
102    
103  $\tau$: {\bf tracer} (argument)  $\tau^{(n+1)}$: {\bf gTracer} (argument on exit)
104    
105  $G^{(n)}$: {\bf gTracer} (argument)  $\tau^{(n)}$: {\bf tracer} (argument on entry)
106    
107  $G^{(n-1)}$: {\bf gTrNm1} (argument)  $G^{(n+1/2)}$: {\bf gTracer} (argument)
108    
109  $\Delta t$: {\bf deltaTtracer} (PARAMS.h)  $\Delta t$: {\bf deltaTtracer} (PARAMS.h)
110    
111  \end{minipage} }  \end{minipage} }
112    
113    Strictly speaking the ABII scheme should be applied only to the
114    advection terms. However, this scheme is only used in conjuction with
115    the standard second, third and fourth order advection
116    schemes. Selection of any other advection scheme disables
117    Adams-Bashforth for tracers so that explicit diffusion and forcing use
118    the forward method.
119    
120    
121    
122    
123    \section{Linear advection schemes}
124    
125  \begin{figure}  \begin{figure}
126  \resizebox{5.5in}{!}{\includegraphics{part2/advect-1d-lo.eps}}  \resizebox{5.5in}{!}{\includegraphics{part2/advect-1d-lo.eps}}
127  \caption{  \caption{
# Line 136  $\mu=c/(1-c)$. Line 159  $\mu=c/(1-c)$.
159  }  }
160  \end{figure}  \end{figure}
161    
 \section{Linear advection schemes}  
   
162  The advection schemes known as centered second order, centered fourth  The advection schemes known as centered second order, centered fourth
163  order, first order upwind and upwind biased third order are known as  order, first order upwind and upwind biased third order are known as
164  linear advection schemes because the coefficient for interpolation of  linear advection schemes because the coefficient for interpolation of
# Line 228  At boundaries, $\delta_{\hat{n}} \tau$ i Line 249  At boundaries, $\delta_{\hat{n}} \tau$ i
249  $\delta_{nn}$ to be evaluated. We are currently examing the accuracy  $\delta_{nn}$ to be evaluated. We are currently examing the accuracy
250  of this boundary condition and the effect on the solution.  of this boundary condition and the effect on the solution.
251    
252    \fbox{ \begin{minipage}{4.75in}
253    {\em S/R GAD\_U3\_ADV\_X} ({\em gad\_u3\_adv\_x.F})
254    
255    $F_x$: {\bf uT} (argument)
256    
257    $U$: {\bf uTrans} (argument)
258    
259    $\tau$: {\bf tracer} (argument)
260    
261    {\em S/R GAD\_U3\_ADV\_Y} ({\em gad\_u3\_adv\_y.F})
262    
263    $F_y$: {\bf vT} (argument)
264    
265    $V$: {\bf vTrans} (argument)
266    
267    $\tau$: {\bf tracer} (argument)
268    
269    {\em S/R GAD\_U3\_ADV\_R} ({\em gad\_u3\_adv\_r.F})
270    
271    $F_r$: {\bf wT} (argument)
272    
273    $W$: {\bf rTrans} (argument)
274    
275    $\tau$: {\bf tracer} (argument)
276    
277    \end{minipage} }
278    
279  \subsection{Centered fourth order advection}  \subsection{Centered fourth order advection}
280    
# Line 250  F_r & = & W \overline{\tau - \frac{1}{6} Line 297  F_r & = & W \overline{\tau - \frac{1}{6}
297  As for the third order scheme, the best discretization near boundaries  As for the third order scheme, the best discretization near boundaries
298  is under investigation but currenlty $\delta_i \tau=0$ on a boundary.  is under investigation but currenlty $\delta_i \tau=0$ on a boundary.
299    
300    \fbox{ \begin{minipage}{4.75in}
301    {\em S/R GAD\_C4\_ADV\_X} ({\em gad\_c4\_adv\_x.F})
302    
303    $F_x$: {\bf uT} (argument)
304    
305    $U$: {\bf uTrans} (argument)
306    
307    $\tau$: {\bf tracer} (argument)
308    
309    {\em S/R GAD\_C4\_ADV\_Y} ({\em gad\_c4\_adv\_y.F})
310    
311    $F_y$: {\bf vT} (argument)
312    
313    $V$: {\bf vTrans} (argument)
314    
315    $\tau$: {\bf tracer} (argument)
316    
317    {\em S/R GAD\_C4\_ADV\_R} ({\em gad\_c4\_adv\_r.F})
318    
319    $F_r$: {\bf wT} (argument)
320    
321    $W$: {\bf rTrans} (argument)
322    
323    $\tau$: {\bf tracer} (argument)
324    
325    \end{minipage} }
326    
327    
328  \subsection{First order upwind advection}  \subsection{First order upwind advection}
329    
330  Although the upwind scheme is the underlying scheme for the robust or  Although the upwind scheme is the underlying scheme for the robust or
# Line 315  only provide the Superbee limiter \cite{ Line 390  only provide the Superbee limiter \cite{
390  \psi(r) = \max[0,\min[1,2r],\min[2,r]]  \psi(r) = \max[0,\min[1,2r],\min[2,r]]
391  \end{equation}  \end{equation}
392    
393    \fbox{ \begin{minipage}{4.75in}
394    {\em S/R GAD\_FLUXLIMIT\_ADV\_X} ({\em gad\_fluxlimit\_adv\_x.F})
395    
396    $F_x$: {\bf uT} (argument)
397    
398    $U$: {\bf uTrans} (argument)
399    
400    $\tau$: {\bf tracer} (argument)
401    
402    {\em S/R GAD\_FLUXLIMIT\_ADV\_Y} ({\em gad\_fluxlimit\_adv\_y.F})
403    
404    $F_y$: {\bf vT} (argument)
405    
406    $V$: {\bf vTrans} (argument)
407    
408    $\tau$: {\bf tracer} (argument)
409    
410    {\em S/R GAD\_FLUXLIMIT\_ADV\_R} ({\em gad\_fluxlimit\_adv\_r.F})
411    
412    $F_r$: {\bf wT} (argument)
413    
414    $W$: {\bf rTrans} (argument)
415    
416    $\tau$: {\bf tracer} (argument)
417    
418    \end{minipage} }
419    
420    
421  \subsection{Third order direct space time}  \subsection{Third order direct space time}
422    
# Line 353  large Courant number, where the linear u Line 455  large Courant number, where the linear u
455  unstable, the scheme is extremely accurate  unstable, the scheme is extremely accurate
456  (Fig.~\ref{fig:advect-1d-hi}) with only minor overshoots.  (Fig.~\ref{fig:advect-1d-hi}) with only minor overshoots.
457    
458    \fbox{ \begin{minipage}{4.75in}
459    {\em S/R GAD\_DST3\_ADV\_X} ({\em gad\_dst3\_adv\_x.F})
460    
461    $F_x$: {\bf uT} (argument)
462    
463    $U$: {\bf uTrans} (argument)
464    
465    $\tau$: {\bf tracer} (argument)
466    
467    {\em S/R GAD\_DST3\_ADV\_Y} ({\em gad\_dst3\_adv\_y.F})
468    
469    $F_y$: {\bf vT} (argument)
470    
471    $V$: {\bf vTrans} (argument)
472    
473    $\tau$: {\bf tracer} (argument)
474    
475    {\em S/R GAD\_DST3\_ADV\_R} ({\em gad\_dst3\_adv\_r.F})
476    
477    $F_r$: {\bf wT} (argument)
478    
479    $W$: {\bf rTrans} (argument)
480    
481    $\tau$: {\bf tracer} (argument)
482    
483    \end{minipage} }
484    
485    
486  \subsection{Third order direct space time with flux limiting}  \subsection{Third order direct space time with flux limiting}
487    
488  The overshoots in the DST3 method can be controlled with a flux limiter.  The overshoots in the DST3 method can be controlled with a flux limiter.
# Line 373  and the limiter is the Sweby limiter: Line 503  and the limiter is the Sweby limiter:
503  \psi(r) = \max[0, \min[\min(1,d_0+d_1r],\frac{1-c}{c}r ]]  \psi(r) = \max[0, \min[\min(1,d_0+d_1r],\frac{1-c}{c}r ]]
504  \end{equation}  \end{equation}
505    
506    \fbox{ \begin{minipage}{4.75in}
507    {\em S/R GAD\_DST3FL\_ADV\_X} ({\em gad\_dst3\_adv\_x.F})
508    
509    $F_x$: {\bf uT} (argument)
510    
511    $U$: {\bf uTrans} (argument)
512    
513    $\tau$: {\bf tracer} (argument)
514    
515    {\em S/R GAD\_DST3FL\_ADV\_Y} ({\em gad\_dst3\_adv\_y.F})
516    
517    $F_y$: {\bf vT} (argument)
518    
519    $V$: {\bf vTrans} (argument)
520    
521    $\tau$: {\bf tracer} (argument)
522    
523    {\em S/R GAD\_DST3FL\_ADV\_R} ({\em gad\_dst3\_adv\_r.F})
524    
525    $F_r$: {\bf wT} (argument)
526    
527    $W$: {\bf rTrans} (argument)
528    
529    $\tau$: {\bf tracer} (argument)
530    
531    \end{minipage} }
532    
533    
534  \subsection{Multi-dimensional advection}  \subsection{Multi-dimensional advection}
535    
536    \begin{figure}
537    \resizebox{5.5in}{!}{\includegraphics{part2/advect-2d-lo-diag.eps}}
538    \caption{
539    Comparison of advection schemes in two dimensions; diagonal advection
540    of a resolved Guassian feature. Courant number is 0.01 with
541    30$\times$30 points and solutions are shown for T=1/2. White lines
542    indicate zero crossing (ie. the presence of false minima).  The left
543    column shows the second order schemes; top) centered second order with
544    Adams-Bashforth, middle) Lax-Wendroff and bottom) Superbee flux
545    limited. The middle column shows the third order schemes; top) upwind
546    biased third order with Adams-Bashforth, middle) third order direct
547    space-time method and bottom) the same with flux limiting. The top
548    right panel shows the centered fourth order scheme with
549    Adams-Bashforth and right middle panel shows a fourth order variant on
550    the DST method. Bottom right panel shows the Superbee flux limiter
551    (second order) applied independantly in each direction (method of
552    lines).
553    \label{fig:advect-2d-lo-diag}
554    }
555    \end{figure}
556    
557    \begin{figure}
558    \resizebox{5.5in}{!}{\includegraphics{part2/advect-2d-mid-diag.eps}}
559    \caption{
560    Comparison of advection schemes in two dimensions; diagonal advection
561    of a resolved Guassian feature. Courant number is 0.27 with
562    30$\times$30 points and solutions are shown for T=1/2. White lines
563    indicate zero crossing (ie. the presence of false minima).  The left
564    column shows the second order schemes; top) centered second order with
565    Adams-Bashforth, middle) Lax-Wendroff and bottom) Superbee flux
566    limited. The middle column shows the third order schemes; top) upwind
567    biased third order with Adams-Bashforth, middle) third order direct
568    space-time method and bottom) the same with flux limiting. The top
569    right panel shows the centered fourth order scheme with
570    Adams-Bashforth and right middle panel shows a fourth order variant on
571    the DST method. Bottom right panel shows the Superbee flux limiter
572    (second order) applied independantly in each direction (method of
573    lines).
574    \label{fig:advect-2d-mid-diag}
575    }
576    \end{figure}
577    
578    \begin{figure}
579    \resizebox{5.5in}{!}{\includegraphics{part2/advect-2d-hi-diag.eps}}
580    \caption{
581    Comparison of advection schemes in two dimensions; diagonal advection
582    of a resolved Guassian feature. Courant number is 0.47 with
583    30$\times$30 points and solutions are shown for T=1/2. White lines
584    indicate zero crossings and initial maximum values (ie. the presence
585    of false extrema).  The left column shows the second order schemes;
586    top) centered second order with Adams-Bashforth, middle) Lax-Wendroff
587    and bottom) Superbee flux limited. The middle column shows the third
588    order schemes; top) upwind biased third order with Adams-Bashforth,
589    middle) third order direct space-time method and bottom) the same with
590    flux limiting. The top right panel shows the centered fourth order
591    scheme with Adams-Bashforth and right middle panel shows a fourth
592    order variant on the DST method. Bottom right panel shows the Superbee
593    flux limiter (second order) applied independantly in each direction
594    (method of lines).
595    \label{fig:advect-2d-hi-diag}
596    }
597    \end{figure}
598    
599    
600    
601  In many of the aforementioned advection schemes the behaviour in  In many of the aforementioned advection schemes the behaviour in
602  multiple dimensions is not necessarily as good as the one dimensional  multiple dimensions is not necessarily as good as the one dimensional
603  behaviour. For instance, a shape preserving monotonic scheme in one  behaviour. For instance, a shape preserving monotonic scheme in one
# Line 408  So that the over all time-stepping looks Line 631  So that the over all time-stepping looks
631  \begin{equation}  \begin{equation}
632  \tau^{n+1} = \tau^{n} + \Delta t \left( G^{n+1/2}_{adv} + G_{diff}(\tau^{n}) + G^{n}_{forcing} \right)  \tau^{n+1} = \tau^{n} + \Delta t \left( G^{n+1/2}_{adv} + G_{diff}(\tau^{n}) + G^{n}_{forcing} \right)
633  \end{equation}  \end{equation}
634    
635    \fbox{ \begin{minipage}{4.75in}
636    {\em S/R GAD\_ADVECTION} ({\em gad\_advection.F})
637    
638    $\tau$: {\bf Tracer} (argument)
639    
640    $G^{n+1/2}_{adv}$: {\bf Gtracer} (argument)
641    
642    $F_x, F_y, F_r$: {\bf af} (local)
643    
644    $U$: {\bf uTrans} (local)
645    
646    $V$: {\bf vTrans} (local)
647    
648    $W$: {\bf rTrans} (local)
649    
650    \end{minipage} }
651    
652    
653    \section{Comparison of advection schemes}
654    
655    Figs.~\ref{fig:advect-2d-lo-diag}, \ref{fig:advect-2d-mid-diag} and
656    \ref{fig:advect-2d-hi-diag} show solutions to a simple diagonal
657    advection problem using a selection of schemes for low, moderate and
658    high Courant numbers, respectively. The top row shows the linear
659    schemes, integrated with the Adams-Bashforth method. Theses schemes
660    are clearly unstable for the high Courant number and weakly unstable
661    for the moderate Courant number. The presence of false extrema is very
662    apparent for all Courant numbers. The middle row shows solutions
663    obtained with the unlimited but multi-dimensional schemes. These
664    solutions also exhibit false extrema though the pattern now shows
665    symmetry due to the multi-dimensional scheme. Also, the schemes are
666    stable at high Courant number where the linear schemes weren't. The
667    bottom row (left and middle) shows the limited schemes and most
668    obvious is the absence of false extrema. The accuracy and stability of
669    the unlimited non-linear schemes is retained at high Courant number
670    but at low Courant number the tendancy is to loose amplitude in sharp
671    peaks due to diffusion. The one dimensional tests shown in
672    Figs.~\ref{fig:advect-1d-lo} and \ref{fig:advect-1d-hi} showed this
673    phenomenum.
674    
675    Finally, the bottom left and right panels use the same advection
676    scheme but the right does not use the mutli-dimensional method. At low
677    Courant number this appears to not matter but for moderate Courant
678    number severe distortion of the feature is apparent. Moreoever, the
679    stability of the multi-dimensional scheme is determined by the maximum
680    Courant number applied of each dimension while the stability of the
681    method of lines is determined by the sum. Hence, in the high Courant
682    number plot, the scheme is unstable.
683    
684    With many advection schemes implemented in the code two questions
685    arise: ``Which scheme is best?'' and ``Why don't you just offer the
686    best advection scheme?''. Unfortunately, no one advection scheme is
687    ``the best'' for all particular applications and for new applications
688    it is often a matter of trial to determine which is most
689    suitable. Here are some guidelines but these are not the rule;
690    \begin{itemize}
691    \item If you have a coarsely resolved model, using a
692    positive or upwind biased scheme will introduce significant diffusion
693    to the solution and using a centered higher order scheme will
694    introduce more noise. In this case, simplest may be best.
695    \item If you have a high resolution model, using a higher order
696    scheme will give a more accurate solution but scale-selective
697    diffusion might need to be employed. The flux limited methods
698    offer similar accuracy in this regime.
699    \item If your solution has shocks or propagatin fronts then a
700    flux limited scheme is almost essential.
701    \item If your time-step is limited by advection, the multi-dimensional
702    non-linear schemes have the most stablility (upto Courant number 1).
703    \item If you need to know how much diffusion/dissipation has occured you
704    will have a lot of trouble figuring it out with a non-linear method.
705    \item The presence of false extrema is unphysical and this alone is the
706    strongest argument for using a positive scheme.
707    \end{itemize}

Legend:
Removed from v.1.3  
changed lines
  Added in v.1.4

  ViewVC Help
Powered by ViewVC 1.1.22