/[MITgcm]/manual/s_algorithm/text/tracer.tex
ViewVC logotype

Annotation of /manual/s_algorithm/text/tracer.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.5 - (hide annotations) (download) (as text)
Wed Oct 24 14:19:34 2001 UTC (23 years, 8 months ago) by cnh
Branch: MAIN
Changes since 1.4: +2 -1 lines
File MIME type: application/x-tex
Added label

1 cnh 1.5 % $Header: /u/u0/gcmpack/mitgcmdoc/part2/tracer.tex,v 1.4 2001/09/26 17:00:34 adcroft Exp $
2 adcroft 1.2 % $Name: $
3 adcroft 1.1
4     \section{Tracer equations}
5 cnh 1.5 \label{sec:tracer_eqautions}
6 adcroft 1.1
7 adcroft 1.2 The basic discretization used for the tracer equations is the second
8     order piece-wise constant finite volume form of the forced
9     advection-diussion equations. There are many alternatives to second
10     order method for advection and alternative parameterizations for the
11     sub-grid scale processes. The Gent-McWilliams eddy parameterization,
12     KPP mixing scheme and PV flux parameterization are all dealt with in
13     separate sections. The basic discretization of the advection-diffusion
14     part of the tracer equations and the various advection schemes will be
15     described here.
16    
17 adcroft 1.3 \subsection{Time-stepping of tracers: ABII}
18    
19     The default advection scheme is the centered second order method which
20     requires a second order or quasi-second order time-stepping scheme to
21     be stable. Historically this has been the quasi-second order
22     Adams-Bashforth method (ABII) and applied to all terms. For an
23     arbitrary tracer, $\tau$, the forced advection-diffusion equation
24     reads:
25     \begin{equation}
26     \partial_t \tau + G_{adv}^\tau = G_{diff}^\tau + G_{forc}^\tau
27     \end{equation}
28     where $G_{adv}^\tau$, $G_{diff}^\tau$ and $G_{forc}^\tau$ are the
29     tendencies due to advection, diffusion and forcing, respectively,
30     namely:
31     \begin{eqnarray}
32     G_{adv}^\tau & = & \partial_x u \tau + \partial_y v \tau + \partial_r w \tau
33     - \tau \nabla \cdot {\bf v} \\
34     G_{diff}^\tau & = & \nabla \cdot {\bf K} \nabla \tau
35     \end{eqnarray}
36     and the forcing can be some arbitrary function of state, time and
37     space.
38    
39     The term, $\tau \nabla \cdot {\bf v}$, is required to retain local
40     conservation in conjunction with the linear implicit free-surface. It
41     only affects the surface layer since the flow is non-divergent
42     everywhere else. This term is therefore referred to as the surface
43     correction term. Global conservation is not possible using the
44     flux-form (as here) and a linearized free-surface
45     (\cite{Griffies00,Campin02}).
46    
47     The continuity equation can be recovered by setting
48     $G_{diff}=G_{forc}=0$ and $\tau=1$.
49    
50     The driver routine that calls the routines to calculate tendancies are
51     {\em S/R CALC\_GT} and {\em S/R CALC\_GS} for temperature and salt
52     (moisture), respectively. These in turn call a generic advection
53     diffusion routine {\em S/R GAD\_CALC\_RHS} that is called with the
54     flow field and relevent tracer as arguments and returns the collective
55     tendancy due to advection and diffusion. Forcing is add subsequently
56     in {\em S/R CALC\_GT} or {\em S/R CALC\_GS} to the same tendancy
57     array.
58    
59     \fbox{ \begin{minipage}{4.75in}
60     {\em S/R GAD\_CALC\_RHS} ({\em pkg/generic\_advdiff/gad\_calc\_rhs.F})
61    
62     $\tau$: {\bf tracer} (argument)
63    
64     $G^{(n)}$: {\bf gTracer} (argument)
65    
66     $F_r$: {\bf fVerT} (argument)
67    
68     \end{minipage} }
69    
70     The space and time discretizations are treated seperately (method of
71 adcroft 1.4 lines). Tendancies are calculated at time levels $n$ and $n-1$ and
72     extrapolated to $n+1/2$ using the Adams-Bashforth method:
73 adcroft 1.3 \marginpar{$\epsilon$: {\bf AB\_eps}}
74     \begin{equation}
75 adcroft 1.4 G^{(n+1/2)} =
76 adcroft 1.3 (\frac{3}{2} + \epsilon) G^{(n)} - (\frac{1}{2} + \epsilon) G^{(n-1)}
77     \end{equation}
78     where $G^{(n)} = G_{adv}^\tau + G_{diff}^\tau + G_{src}^\tau$ at time
79 adcroft 1.4 step $n$. The tendancy at $n-1$ is not re-calculated but rather the
80     tendancy at $n$ is stored in a global array for later re-use.
81    
82     \fbox{ \begin{minipage}{4.75in}
83     {\em S/R ADAMS\_BASHFORTH2} ({\em model/src/adams\_bashforth2.F})
84    
85     $G^{(n+1/2)}$: {\bf gTracer} (argument on exit)
86    
87     $G^{(n)}$: {\bf gTracer} (argument on entry)
88    
89     $G^{(n-1)}$: {\bf gTrNm1} (argument)
90    
91     $\epsilon$: {\bf ABeps} (PARAMS.h)
92    
93     \end{minipage} }
94    
95     The tracers are stepped forward in time using the extrapolated tendancy:
96     \begin{equation}
97     \tau^{(n+1)} = \tau^{(n)} + \Delta t G^{(n+1/2)}
98     \end{equation}
99     \marginpar{$\Delta t$: {\bf deltaTtracer}}
100    
101     \fbox{ \begin{minipage}{4.75in}
102     {\em S/R TIMESTEP\_TRACER} ({\em model/src/timestep\_tracer.F})
103    
104     $\tau^{(n+1)}$: {\bf gTracer} (argument on exit)
105    
106     $\tau^{(n)}$: {\bf tracer} (argument on entry)
107    
108     $G^{(n+1/2)}$: {\bf gTracer} (argument)
109    
110     $\Delta t$: {\bf deltaTtracer} (PARAMS.h)
111    
112     \end{minipage} }
113 adcroft 1.3
114     Strictly speaking the ABII scheme should be applied only to the
115     advection terms. However, this scheme is only used in conjuction with
116     the standard second, third and fourth order advection
117     schemes. Selection of any other advection scheme disables
118     Adams-Bashforth for tracers so that explicit diffusion and forcing use
119     the forward method.
120    
121    
122    
123    
124 adcroft 1.4 \section{Linear advection schemes}
125 adcroft 1.3
126     \begin{figure}
127     \resizebox{5.5in}{!}{\includegraphics{part2/advect-1d-lo.eps}}
128     \caption{
129     Comparison of 1-D advection schemes. Courant number is 0.05 with 60
130     points and solutions are shown for T=1 (one complete period).
131     a) Shows the upwind biased schemes; first order upwind, DST3,
132     third order upwind and second order upwind.
133     b) Shows the centered schemes; Lax-Wendroff, DST4, centered second order,
134     centered fourth order and finite volume fourth order.
135     c) Shows the second order flux limiters: minmod, Superbee,
136     MC limiter and the van Leer limiter.
137     d) Shows the DST3 method with flux limiters due to Sweby with
138     $\mu=1$, $\mu=c/(1-c)$ and a fourth order DST method with Sweby limiter,
139     $\mu=c/(1-c)$.
140     \label{fig:advect-1d-lo}
141     }
142     \end{figure}
143    
144     \begin{figure}
145     \resizebox{5.5in}{!}{\includegraphics{part2/advect-1d-hi.eps}}
146     \caption{
147     Comparison of 1-D advection schemes. Courant number is 0.89 with 60
148     points and solutions are shown for T=1 (one complete period).
149     a) Shows the upwind biased schemes; first order upwind and DST3.
150     Third order upwind and second order upwind are unstable at this Courant number.
151     b) Shows the centered schemes; Lax-Wendroff, DST4. Centered second order,
152     centered fourth order and finite volume fourth order and unstable at this
153     Courant number.
154     c) Shows the second order flux limiters: minmod, Superbee,
155     MC limiter and the van Leer limiter.
156     d) Shows the DST3 method with flux limiters due to Sweby with
157     $\mu=1$, $\mu=c/(1-c)$ and a fourth order DST method with Sweby limiter,
158     $\mu=c/(1-c)$.
159     \label{fig:advect-1d-hi}
160     }
161     \end{figure}
162    
163     The advection schemes known as centered second order, centered fourth
164     order, first order upwind and upwind biased third order are known as
165     linear advection schemes because the coefficient for interpolation of
166     the advected tracer are linear and a function only of the flow, not
167     the tracer field it self. We discuss these first since they are most
168     commonly used in the field and most familiar.
169    
170 adcroft 1.2 \subsection{Centered second order advection-diffusion}
171    
172     The basic discretization, centered second order, is the default. It is
173     designed to be consistant with the continuity equation to facilitate
174 adcroft 1.3 conservation properties analogous to the continuum. However, centered
175     second order advection is notoriously noisey and must be used in
176     conjuction with some finite amount of diffusion to produce a sensible
177     solution.
178    
179     The advection operator is discretized:
180 adcroft 1.1 \begin{equation}
181 adcroft 1.3 {\cal A}_c \Delta r_f h_c G_{adv}^\tau =
182     \delta_i F_x + \delta_j F_y + \delta_k F_r
183 adcroft 1.1 \end{equation}
184 adcroft 1.2 where the area integrated fluxes are given by:
185     \begin{eqnarray}
186 adcroft 1.3 F_x & = & U \overline{ \tau }^i \\
187     F_y & = & V \overline{ \tau }^j \\
188     F_r & = & W \overline{ \tau }^k
189 adcroft 1.2 \end{eqnarray}
190 adcroft 1.1 The quantities $U$, $V$ and $W$ are volume fluxes defined:
191     \marginpar{$U$: {\bf uTrans} }
192     \marginpar{$V$: {\bf vTrans} }
193     \marginpar{$W$: {\bf rTrans} }
194     \begin{eqnarray}
195     U & = & \Delta y_g \Delta r_f h_w u \\
196     V & = & \Delta x_g \Delta r_f h_s v \\
197     W & = & {\cal A}_c w
198     \end{eqnarray}
199    
200 adcroft 1.3 For non-divergent flow, this discretization can be shown to conserve
201     the tracer both locally and globally and to globally conserve tracer
202     variance, $\tau^2$. The proof is given in \cite{Adcroft95,Adcroft97}.
203    
204     \fbox{ \begin{minipage}{4.75in}
205     {\em S/R GAD\_C2\_ADV\_X} ({\em gad\_c2\_adv\_x.F})
206    
207     $F_x$: {\bf uT} (argument)
208    
209     $U$: {\bf uTrans} (argument)
210    
211     $\tau$: {\bf tracer} (argument)
212    
213     {\em S/R GAD\_C2\_ADV\_Y} ({\em gad\_c2\_adv\_y.F})
214    
215     $F_y$: {\bf vT} (argument)
216    
217     $V$: {\bf vTrans} (argument)
218    
219     $\tau$: {\bf tracer} (argument)
220    
221     {\em S/R GAD\_C2\_ADV\_R} ({\em gad\_c2\_adv\_r.F})
222    
223     $F_r$: {\bf wT} (argument)
224    
225     $W$: {\bf rTrans} (argument)
226    
227     $\tau$: {\bf tracer} (argument)
228    
229     \end{minipage} }
230    
231    
232     \subsection{Third order upwind bias advection}
233    
234     Upwind biased third order advection offers a relatively good
235     compromise between accuracy and smoothness. It is not a ``positive''
236     scheme meaning false extrema are permitted but the amplitude of such
237     are significantly reduced over the centered second order method.
238    
239     The third order upwind fluxes are discretized:
240     \begin{eqnarray}
241     F_x & = & U \overline{\tau - \frac{1}{6} \delta_{ii} \tau}^i
242     + \frac{1}{2} |U| \delta_i \frac{1}{6} \delta_{ii} \tau \\
243     F_y & = & V \overline{\tau - \frac{1}{6} \delta_{ii} \tau}^j
244     + \frac{1}{2} |V| \delta_j \frac{1}{6} \delta_{jj} \tau \\
245     F_r & = & W \overline{\tau - \frac{1}{6} \delta_{ii} \tau}^k
246     + \frac{1}{2} |W| \delta_k \frac{1}{6} \delta_{kk} \tau
247     \end{eqnarray}
248    
249     At boundaries, $\delta_{\hat{n}} \tau$ is set to zero allowing
250     $\delta_{nn}$ to be evaluated. We are currently examing the accuracy
251     of this boundary condition and the effect on the solution.
252    
253 adcroft 1.4 \fbox{ \begin{minipage}{4.75in}
254     {\em S/R GAD\_U3\_ADV\_X} ({\em gad\_u3\_adv\_x.F})
255    
256     $F_x$: {\bf uT} (argument)
257    
258     $U$: {\bf uTrans} (argument)
259    
260     $\tau$: {\bf tracer} (argument)
261    
262     {\em S/R GAD\_U3\_ADV\_Y} ({\em gad\_u3\_adv\_y.F})
263    
264     $F_y$: {\bf vT} (argument)
265    
266     $V$: {\bf vTrans} (argument)
267    
268     $\tau$: {\bf tracer} (argument)
269    
270     {\em S/R GAD\_U3\_ADV\_R} ({\em gad\_u3\_adv\_r.F})
271    
272     $F_r$: {\bf wT} (argument)
273    
274     $W$: {\bf rTrans} (argument)
275    
276     $\tau$: {\bf tracer} (argument)
277    
278     \end{minipage} }
279 adcroft 1.3
280     \subsection{Centered fourth order advection}
281    
282     Centered fourth order advection is formally the most accurate scheme
283     we have implemented and can be used to great effect in high resolution
284     simultation where dynamical scales are well resolved. However, the
285     scheme is noisey like the centered second order method and so must be
286     used with some finite amount of diffusion. Bi-harmonic is recommended
287     since it is more scale selective and less likely to diffuse away the
288     well resolved gradient the fourth order scheme worked so hard to
289     create.
290    
291     The centered fourth order fluxes are discretized:
292     \begin{eqnarray}
293     F_x & = & U \overline{\tau - \frac{1}{6} \delta_{ii} \tau}^i \\
294     F_y & = & V \overline{\tau - \frac{1}{6} \delta_{ii} \tau}^j \\
295     F_r & = & W \overline{\tau - \frac{1}{6} \delta_{ii} \tau}^k
296     \end{eqnarray}
297    
298     As for the third order scheme, the best discretization near boundaries
299     is under investigation but currenlty $\delta_i \tau=0$ on a boundary.
300    
301 adcroft 1.4 \fbox{ \begin{minipage}{4.75in}
302     {\em S/R GAD\_C4\_ADV\_X} ({\em gad\_c4\_adv\_x.F})
303    
304     $F_x$: {\bf uT} (argument)
305    
306     $U$: {\bf uTrans} (argument)
307    
308     $\tau$: {\bf tracer} (argument)
309    
310     {\em S/R GAD\_C4\_ADV\_Y} ({\em gad\_c4\_adv\_y.F})
311    
312     $F_y$: {\bf vT} (argument)
313    
314     $V$: {\bf vTrans} (argument)
315    
316     $\tau$: {\bf tracer} (argument)
317    
318     {\em S/R GAD\_C4\_ADV\_R} ({\em gad\_c4\_adv\_r.F})
319    
320     $F_r$: {\bf wT} (argument)
321    
322     $W$: {\bf rTrans} (argument)
323    
324     $\tau$: {\bf tracer} (argument)
325    
326     \end{minipage} }
327    
328    
329 adcroft 1.3 \subsection{First order upwind advection}
330    
331     Although the upwind scheme is the underlying scheme for the robust or
332     non-linear methods given later, we haven't actually supplied this
333     method for general use. It would be very diffusive and it is unlikely
334     that it could ever produce more useful results than the positive
335     higher order schemes.
336    
337     Upwind bias is introduced into many schemes using the {\em abs}
338     function and is allows the first order upwind flux to be written:
339     \begin{eqnarray}
340     F_x & = & U \overline{ \tau }^i - \frac{1}{2} |U| \delta_i \tau \\
341     F_y & = & V \overline{ \tau }^j - \frac{1}{2} |V| \delta_j \tau \\
342     F_r & = & W \overline{ \tau }^k - \frac{1}{2} |W| \delta_k \tau
343     \end{eqnarray}
344    
345     If for some reason, the above method is required, then the second
346     order flux limiter scheme described later reduces to the above scheme
347     if the limiter is set to zero.
348    
349    
350     \section{Non-linear advection schemes}
351    
352     Non-linear advection schemes invoke non-linear interpolation and are
353     widely used in computational fluid dynamics (non-linear does not refer
354     to the non-linearity of the advection operator). The flux limited
355     advection schemes belong to the class of finite volume methods which
356     neatly ties into the spatial discretization of the model.
357    
358     When employing the flux limited schemes, first order upwind or
359     direct-space-time method the time-stepping is switched to forward in
360     time.
361    
362     \subsection{Second order flux limiters}
363    
364     The second order flux limiter method can be cast in several ways but
365     is generally expressed in terms of other flux approximations. For
366     example, in terms of a first order upwind flux and second order
367     Lax-Wendroff flux, the limited flux is given as:
368     \begin{equation}
369     F = F_1 + \psi(r) F_{LW}
370     \end{equation}
371     where $\psi(r)$ is the limiter function,
372     \begin{equation}
373     F_1 = u \overline{\tau}^i - \frac{1}{2} |u| \delta_i \tau
374     \end{equation}
375     is the upwind flux,
376     \begin{equation}
377     F_{LW} = F_1 + \frac{|u|}{2} (1-c) \delta_i \tau
378     \end{equation}
379     is the Lax-Wendroff flux and $c = \frac{u \Delta t}{\Delta x}$ is the
380     Courant (CFL) number.
381    
382     The limiter function, $\psi(r)$, takes the slope ratio
383     \begin{eqnarray}
384     r = \frac{ \tau_{i-1} - \tau_{i-2} }{ \tau_{i} - \tau_{i-1} } & \forall & u > 0
385     \\
386     r = \frac{ \tau_{i+1} - \tau_{i} }{ \tau_{i} - \tau_{i-1} } & \forall & u < 0
387     \end{eqnarray}
388     as it's argument. There are many choices of limiter function but we
389     only provide the Superbee limiter \cite{Roe85}:
390     \begin{equation}
391     \psi(r) = \max[0,\min[1,2r],\min[2,r]]
392     \end{equation}
393    
394 adcroft 1.4 \fbox{ \begin{minipage}{4.75in}
395     {\em S/R GAD\_FLUXLIMIT\_ADV\_X} ({\em gad\_fluxlimit\_adv\_x.F})
396    
397     $F_x$: {\bf uT} (argument)
398    
399     $U$: {\bf uTrans} (argument)
400    
401     $\tau$: {\bf tracer} (argument)
402    
403     {\em S/R GAD\_FLUXLIMIT\_ADV\_Y} ({\em gad\_fluxlimit\_adv\_y.F})
404    
405     $F_y$: {\bf vT} (argument)
406    
407     $V$: {\bf vTrans} (argument)
408    
409     $\tau$: {\bf tracer} (argument)
410    
411     {\em S/R GAD\_FLUXLIMIT\_ADV\_R} ({\em gad\_fluxlimit\_adv\_r.F})
412    
413     $F_r$: {\bf wT} (argument)
414    
415     $W$: {\bf rTrans} (argument)
416    
417     $\tau$: {\bf tracer} (argument)
418    
419     \end{minipage} }
420    
421 adcroft 1.3
422     \subsection{Third order direct space time}
423    
424     The direct-space-time method deals with space and time discretization
425     together (other methods that treat space and time seperately are known
426     collectively as the ``Method of Lines''). The Lax-Wendroff scheme
427     falls into this category; it adds sufficient diffusion to a second
428     order flux that the forward-in-time method is stable. The upwind
429     biased third order DST scheme is:
430     \begin{eqnarray}
431     F = u \left( \tau_{i-1}
432     + d_0 (\tau_{i}-\tau_{i-1}) + d_1 (\tau_{i-1}-\tau_{i-2}) \right)
433     & \forall & u > 0 \\
434     F = u \left( \tau_{i}
435     - d_0 (\tau_{i}-\tau_{i-1}) - d_1 (\tau_{i+1}-\tau_{i}) \right)
436     & \forall & u < 0
437     \end{eqnarray}
438     where
439     \begin{eqnarray}
440     d_1 & = & \frac{1}{6} ( 2 - |c| ) ( 1 - |c| ) \\
441     d_2 & = & \frac{1}{6} ( 1 - |c| ) ( 1 + |c| )
442     \end{eqnarray}
443     The coefficients $d_0$ and $d_1$ approach $1/3$ and $1/6$ repectively
444     as the Courant number, $c$, vanishes. In this limit, the conventional
445     third order upwind method is recovered. For finite Courant number, the
446     deviations from the linear method are analogous to the diffusion added
447     to centered second order advection in the Lax-Wendroff scheme.
448    
449     The DST3 method described above must be used in a forward-in-time
450     manner and is stable for $0 \le |c| \le 1$. Although the scheme
451     appears to be forward-in-time, it is in fact second order in time and
452     the accuracy increases with the Courant number! For low Courant
453     number, DST3 produces very similar results (indistinguishable in
454     Fig.~\ref{fig:advect-1d-lo}) to the linear third order method but for
455     large Courant number, where the linear upwind third order method is
456     unstable, the scheme is extremely accurate
457     (Fig.~\ref{fig:advect-1d-hi}) with only minor overshoots.
458    
459 adcroft 1.4 \fbox{ \begin{minipage}{4.75in}
460     {\em S/R GAD\_DST3\_ADV\_X} ({\em gad\_dst3\_adv\_x.F})
461    
462     $F_x$: {\bf uT} (argument)
463    
464     $U$: {\bf uTrans} (argument)
465    
466     $\tau$: {\bf tracer} (argument)
467    
468     {\em S/R GAD\_DST3\_ADV\_Y} ({\em gad\_dst3\_adv\_y.F})
469    
470     $F_y$: {\bf vT} (argument)
471    
472     $V$: {\bf vTrans} (argument)
473    
474     $\tau$: {\bf tracer} (argument)
475    
476     {\em S/R GAD\_DST3\_ADV\_R} ({\em gad\_dst3\_adv\_r.F})
477    
478     $F_r$: {\bf wT} (argument)
479    
480     $W$: {\bf rTrans} (argument)
481    
482     $\tau$: {\bf tracer} (argument)
483    
484     \end{minipage} }
485    
486    
487 adcroft 1.3 \subsection{Third order direct space time with flux limiting}
488    
489     The overshoots in the DST3 method can be controlled with a flux limiter.
490     The limited flux is written:
491     \begin{equation}
492     F =
493     \frac{1}{2}(u+|u|)\left( \tau_{i-1} + \psi(r^+)(\tau_{i} - \tau_{i-1} )\right)
494     +
495     \frac{1}{2}(u-|u|)\left( \tau_{i-1} + \psi(r^-)(\tau_{i} - \tau_{i-1} )\right)
496     \end{equation}
497     where
498     \begin{eqnarray}
499     r^+ & = & \frac{\tau_{i-1} - \tau_{i-2}}{\tau_{i} - \tau_{i-1}} \\
500     r^- & = & \frac{\tau_{i+1} - \tau_{i}}{\tau_{i} - \tau_{i-1}}
501     \end{eqnarray}
502     and the limiter is the Sweby limiter:
503     \begin{equation}
504     \psi(r) = \max[0, \min[\min(1,d_0+d_1r],\frac{1-c}{c}r ]]
505     \end{equation}
506 adcroft 1.1
507 adcroft 1.4 \fbox{ \begin{minipage}{4.75in}
508     {\em S/R GAD\_DST3FL\_ADV\_X} ({\em gad\_dst3\_adv\_x.F})
509    
510     $F_x$: {\bf uT} (argument)
511    
512     $U$: {\bf uTrans} (argument)
513    
514     $\tau$: {\bf tracer} (argument)
515    
516     {\em S/R GAD\_DST3FL\_ADV\_Y} ({\em gad\_dst3\_adv\_y.F})
517    
518     $F_y$: {\bf vT} (argument)
519    
520     $V$: {\bf vTrans} (argument)
521    
522     $\tau$: {\bf tracer} (argument)
523    
524     {\em S/R GAD\_DST3FL\_ADV\_R} ({\em gad\_dst3\_adv\_r.F})
525    
526     $F_r$: {\bf wT} (argument)
527    
528     $W$: {\bf rTrans} (argument)
529    
530     $\tau$: {\bf tracer} (argument)
531    
532     \end{minipage} }
533    
534    
535 adcroft 1.3 \subsection{Multi-dimensional advection}
536 adcroft 1.1
537 adcroft 1.4 \begin{figure}
538     \resizebox{5.5in}{!}{\includegraphics{part2/advect-2d-lo-diag.eps}}
539     \caption{
540     Comparison of advection schemes in two dimensions; diagonal advection
541     of a resolved Guassian feature. Courant number is 0.01 with
542     30$\times$30 points and solutions are shown for T=1/2. White lines
543     indicate zero crossing (ie. the presence of false minima). The left
544     column shows the second order schemes; top) centered second order with
545     Adams-Bashforth, middle) Lax-Wendroff and bottom) Superbee flux
546     limited. The middle column shows the third order schemes; top) upwind
547     biased third order with Adams-Bashforth, middle) third order direct
548     space-time method and bottom) the same with flux limiting. The top
549     right panel shows the centered fourth order scheme with
550     Adams-Bashforth and right middle panel shows a fourth order variant on
551     the DST method. Bottom right panel shows the Superbee flux limiter
552     (second order) applied independantly in each direction (method of
553     lines).
554     \label{fig:advect-2d-lo-diag}
555     }
556     \end{figure}
557    
558     \begin{figure}
559     \resizebox{5.5in}{!}{\includegraphics{part2/advect-2d-mid-diag.eps}}
560     \caption{
561     Comparison of advection schemes in two dimensions; diagonal advection
562     of a resolved Guassian feature. Courant number is 0.27 with
563     30$\times$30 points and solutions are shown for T=1/2. White lines
564     indicate zero crossing (ie. the presence of false minima). The left
565     column shows the second order schemes; top) centered second order with
566     Adams-Bashforth, middle) Lax-Wendroff and bottom) Superbee flux
567     limited. The middle column shows the third order schemes; top) upwind
568     biased third order with Adams-Bashforth, middle) third order direct
569     space-time method and bottom) the same with flux limiting. The top
570     right panel shows the centered fourth order scheme with
571     Adams-Bashforth and right middle panel shows a fourth order variant on
572     the DST method. Bottom right panel shows the Superbee flux limiter
573     (second order) applied independantly in each direction (method of
574     lines).
575     \label{fig:advect-2d-mid-diag}
576     }
577     \end{figure}
578    
579     \begin{figure}
580     \resizebox{5.5in}{!}{\includegraphics{part2/advect-2d-hi-diag.eps}}
581     \caption{
582     Comparison of advection schemes in two dimensions; diagonal advection
583     of a resolved Guassian feature. Courant number is 0.47 with
584     30$\times$30 points and solutions are shown for T=1/2. White lines
585     indicate zero crossings and initial maximum values (ie. the presence
586     of false extrema). The left column shows the second order schemes;
587     top) centered second order with Adams-Bashforth, middle) Lax-Wendroff
588     and bottom) Superbee flux limited. The middle column shows the third
589     order schemes; top) upwind biased third order with Adams-Bashforth,
590     middle) third order direct space-time method and bottom) the same with
591     flux limiting. The top right panel shows the centered fourth order
592     scheme with Adams-Bashforth and right middle panel shows a fourth
593     order variant on the DST method. Bottom right panel shows the Superbee
594     flux limiter (second order) applied independantly in each direction
595     (method of lines).
596     \label{fig:advect-2d-hi-diag}
597     }
598     \end{figure}
599    
600    
601    
602 adcroft 1.3 In many of the aforementioned advection schemes the behaviour in
603     multiple dimensions is not necessarily as good as the one dimensional
604     behaviour. For instance, a shape preserving monotonic scheme in one
605     dimension can have severe shape distortion in two dimensions if the
606     two components of horizontal fluxes are treated independently. There
607     is a large body of literature on the subject dealing with this problem
608     and among the fixes are operator and flux splitting methods, corner
609     flux methods and more. We have adopted a variant on the standard
610     splitting methods that allows the flux calculations to be implemented
611     as if in one dimension:
612     \begin{eqnarray}
613     \tau^{n+1/3} & = & \tau^{n}
614     - \Delta t \left( \frac{1}{\Delta x} \delta_i F^x(\tau^{n})
615     + \tau^{n} \frac{1}{\Delta x} \delta_i u \right) \\
616     \tau^{n+2/3} & = & \tau^{n}
617     - \Delta t \left( \frac{1}{\Delta y} \delta_j F^y(\tau^{n+1/3})
618     + \tau^{n} \frac{1}{\Delta y} \delta_i v \right) \\
619     \tau^{n+3/3} & = & \tau^{n}
620     - \Delta t \left( \frac{1}{\Delta r} \delta_k F^x(\tau^{n+2/3})
621     + \tau^{n} \frac{1}{\Delta r} \delta_i w \right)
622     \end{eqnarray}
623 adcroft 1.1
624 adcroft 1.3 In order to incorporate this method into the general model algorithm,
625     we compute the effective tendancy rather than update the tracer so
626     that other terms such as diffusion are using the $n$ time-level and
627     not the updated $n+3/3$ quantities:
628     \begin{equation}
629     G^{n+1/2}_{adv} = \frac{1}{\Delta t} ( \tau^{n+3/3} - \tau^{n} )
630     \end{equation}
631     So that the over all time-stepping looks likes:
632     \begin{equation}
633     \tau^{n+1} = \tau^{n} + \Delta t \left( G^{n+1/2}_{adv} + G_{diff}(\tau^{n}) + G^{n}_{forcing} \right)
634     \end{equation}
635 adcroft 1.4
636     \fbox{ \begin{minipage}{4.75in}
637     {\em S/R GAD\_ADVECTION} ({\em gad\_advection.F})
638    
639     $\tau$: {\bf Tracer} (argument)
640    
641     $G^{n+1/2}_{adv}$: {\bf Gtracer} (argument)
642    
643     $F_x, F_y, F_r$: {\bf af} (local)
644    
645     $U$: {\bf uTrans} (local)
646    
647     $V$: {\bf vTrans} (local)
648    
649     $W$: {\bf rTrans} (local)
650    
651     \end{minipage} }
652    
653    
654     \section{Comparison of advection schemes}
655    
656     Figs.~\ref{fig:advect-2d-lo-diag}, \ref{fig:advect-2d-mid-diag} and
657     \ref{fig:advect-2d-hi-diag} show solutions to a simple diagonal
658     advection problem using a selection of schemes for low, moderate and
659     high Courant numbers, respectively. The top row shows the linear
660     schemes, integrated with the Adams-Bashforth method. Theses schemes
661     are clearly unstable for the high Courant number and weakly unstable
662     for the moderate Courant number. The presence of false extrema is very
663     apparent for all Courant numbers. The middle row shows solutions
664     obtained with the unlimited but multi-dimensional schemes. These
665     solutions also exhibit false extrema though the pattern now shows
666     symmetry due to the multi-dimensional scheme. Also, the schemes are
667     stable at high Courant number where the linear schemes weren't. The
668     bottom row (left and middle) shows the limited schemes and most
669     obvious is the absence of false extrema. The accuracy and stability of
670     the unlimited non-linear schemes is retained at high Courant number
671     but at low Courant number the tendancy is to loose amplitude in sharp
672     peaks due to diffusion. The one dimensional tests shown in
673     Figs.~\ref{fig:advect-1d-lo} and \ref{fig:advect-1d-hi} showed this
674     phenomenum.
675    
676     Finally, the bottom left and right panels use the same advection
677     scheme but the right does not use the mutli-dimensional method. At low
678     Courant number this appears to not matter but for moderate Courant
679     number severe distortion of the feature is apparent. Moreoever, the
680     stability of the multi-dimensional scheme is determined by the maximum
681     Courant number applied of each dimension while the stability of the
682     method of lines is determined by the sum. Hence, in the high Courant
683     number plot, the scheme is unstable.
684    
685     With many advection schemes implemented in the code two questions
686     arise: ``Which scheme is best?'' and ``Why don't you just offer the
687     best advection scheme?''. Unfortunately, no one advection scheme is
688     ``the best'' for all particular applications and for new applications
689     it is often a matter of trial to determine which is most
690     suitable. Here are some guidelines but these are not the rule;
691     \begin{itemize}
692     \item If you have a coarsely resolved model, using a
693     positive or upwind biased scheme will introduce significant diffusion
694     to the solution and using a centered higher order scheme will
695     introduce more noise. In this case, simplest may be best.
696     \item If you have a high resolution model, using a higher order
697     scheme will give a more accurate solution but scale-selective
698     diffusion might need to be employed. The flux limited methods
699     offer similar accuracy in this regime.
700     \item If your solution has shocks or propagatin fronts then a
701     flux limited scheme is almost essential.
702     \item If your time-step is limited by advection, the multi-dimensional
703     non-linear schemes have the most stablility (upto Courant number 1).
704     \item If you need to know how much diffusion/dissipation has occured you
705     will have a lot of trouble figuring it out with a non-linear method.
706     \item The presence of false extrema is unphysical and this alone is the
707     strongest argument for using a positive scheme.
708     \end{itemize}

  ViewVC Help
Powered by ViewVC 1.1.22