/[MITgcm]/manual/s_algorithm/text/tracer.tex
ViewVC logotype

Annotation of /manual/s_algorithm/text/tracer.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.2 - (hide annotations) (download) (as text)
Thu Aug 9 20:45:27 2001 UTC (23 years, 11 months ago) by adcroft
Branch: MAIN
Changes since 1.1: +34 -12 lines
File MIME type: application/x-tex
End of another day...

1 adcroft 1.2 % $Header: /u/gcmpack/mitgcmdoc/part2/tracer.tex,v 1.1 2001/08/09 19:48:39 adcroft Exp $
2     % $Name: $
3 adcroft 1.1
4     \section{Tracer equations}
5    
6 adcroft 1.2 The basic discretization used for the tracer equations is the second
7     order piece-wise constant finite volume form of the forced
8     advection-diussion equations. There are many alternatives to second
9     order method for advection and alternative parameterizations for the
10     sub-grid scale processes. The Gent-McWilliams eddy parameterization,
11     KPP mixing scheme and PV flux parameterization are all dealt with in
12     separate sections. The basic discretization of the advection-diffusion
13     part of the tracer equations and the various advection schemes will be
14     described here.
15    
16     \subsection{Centered second order advection-diffusion}
17    
18     The basic discretization, centered second order, is the default. It is
19     designed to be consistant with the continuity equation to facilitate
20     conservation properties analogous to the continuum:
21 adcroft 1.1 \begin{equation}
22     {\cal A}_c \Delta r_f h_c \partial_\theta
23 adcroft 1.2 + \delta_i F_x
24     + \delta_j F_y
25     + \delta_k F_r
26     = {\cal A}_c \Delta r_f h_c {\cal S}_\theta
27     + \theta {\cal A}_c \delta_k (P-E)_{r=0}
28 adcroft 1.1 \end{equation}
29 adcroft 1.2 where the area integrated fluxes are given by:
30     \begin{eqnarray}
31     F_x & = & U \overline{ \theta }^i
32     - \kappa_h \frac{\Delta y_g \Delta r_f h_w}{\Delta x_c} \delta_i \theta \\
33     F_y & = & V \overline{ \theta }^j
34     - \kappa_h \frac{\Delta x_g \Delta r_f h_s}{\Delta y_c} \delta_j \theta \\
35     F_r & = & W \overline{ \theta }^k
36     - \kappa_v \frac{\Delta x_g \Delta y_g}{\Delta r_c} \delta_k \theta
37     \end{eqnarray}
38 adcroft 1.1 The quantities $U$, $V$ and $W$ are volume fluxes defined:
39     \marginpar{$U$: {\bf uTrans} }
40     \marginpar{$V$: {\bf vTrans} }
41     \marginpar{$W$: {\bf rTrans} }
42     \begin{eqnarray}
43     U & = & \Delta y_g \Delta r_f h_w u \\
44     V & = & \Delta x_g \Delta r_f h_s v \\
45     W & = & {\cal A}_c w
46     \end{eqnarray}
47 adcroft 1.2 ${\cal S}$ represents the ``parameterized'' SGS processes and physics
48     and sources associated with the tracer. For instance, potential
49 adcroft 1.1 temperature equation in the ocean has is forced by surface and
50     partially penetrating heat fluxes:
51     \begin{equation}
52     {\cal A}_c \Delta r_f h_c {\cal S}_\theta = \frac{1}{c_p \rho_o} \delta_k {\cal A}_c {\cal Q}
53     \end{equation}
54     while the salt equation has no real sources, ${\cal S}=0$, which
55     leaves just the $P-E$ term.
56    
57 adcroft 1.2 The continuity equation can be recovered by setting ${\cal Q}=0$, $\kappa_h = \kappa_v = 0$ and
58 adcroft 1.1 $\theta=1$. The term $\theta (P-E)_{r=0}$ is required to retain local
59     conservation of $\theta$. Global conservation is not possible using
60     the flux-form (as here) and a linearized free-surface
61     (\cite{Griffies00,Campin02}).
62    
63    
64    
65    

  ViewVC Help
Powered by ViewVC 1.1.22