/[MITgcm]/manual/s_algorithm/text/tracer.tex
ViewVC logotype

Annotation of /manual/s_algorithm/text/tracer.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (hide annotations) (download) (as text)
Thu Aug 9 19:48:39 2001 UTC (23 years, 11 months ago) by adcroft
Branch: MAIN
File MIME type: application/x-tex
Moved things around for more sections fewer subsections
Split spatial-discrete.tex into several smaller files.

1 adcroft 1.1 % $Header: $
2     % $Name: $
3    
4     \section{Tracer equations}
5    
6     The tracer equations are discretized consistantly with the continuity
7     equation to facilitate conservation properties analogous to the
8     continuum:
9     \begin{equation}
10     {\cal A}_c \Delta r_f h_c \partial_\theta
11     + \delta_i U \overline{ \theta }^i
12     + \delta_j V \overline{ \theta }^j
13     + \delta_k W \overline{ \theta }^k
14     = {\cal A}_c \Delta r_f h_c {\cal S}_\theta + \theta {\cal A}_c \delta_k (P-E)_{r=0}
15     \end{equation}
16     The quantities $U$, $V$ and $W$ are volume fluxes defined:
17     \marginpar{$U$: {\bf uTrans} }
18     \marginpar{$V$: {\bf vTrans} }
19     \marginpar{$W$: {\bf rTrans} }
20     \begin{eqnarray}
21     U & = & \Delta y_g \Delta r_f h_w u \\
22     V & = & \Delta x_g \Delta r_f h_s v \\
23     W & = & {\cal A}_c w
24     \end{eqnarray}
25     ${\cal S}$ represents the ``parameterized'' SGS processes and
26     physics associated with the tracer. For instance, potential
27     temperature equation in the ocean has is forced by surface and
28     partially penetrating heat fluxes:
29     \begin{equation}
30     {\cal A}_c \Delta r_f h_c {\cal S}_\theta = \frac{1}{c_p \rho_o} \delta_k {\cal A}_c {\cal Q}
31     \end{equation}
32     while the salt equation has no real sources, ${\cal S}=0$, which
33     leaves just the $P-E$ term.
34    
35     The continuity equation can be recovered by setting ${\cal Q}=0$ and
36     $\theta=1$. The term $\theta (P-E)_{r=0}$ is required to retain local
37     conservation of $\theta$. Global conservation is not possible using
38     the flux-form (as here) and a linearized free-surface
39     (\cite{Griffies00,Campin02}).
40    
41    
42    
43    

  ViewVC Help
Powered by ViewVC 1.1.22