/[MITgcm]/manual/s_algorithm/text/time_stepping.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/time_stepping.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.4 by jmc, Fri Aug 17 18:38:10 2001 UTC revision 1.28 by jmc, Mon Aug 30 23:09:19 2010 UTC
# Line 1  Line 1 
1  % $Header$  % $Header$
2  % $Name$  % $Name$
3    
4  The convention used in this section is as follows:  This chapter lays out the numerical schemes that are
5  Time is "discretize" using a time step $\Delta t$    employed in the core MITgcm algorithm. Whenever possible
6  and $\Phi^n$ refers to the variable $\Phi$  links are made to actual program code in the MITgcm implementation.
7  at time $t = n \Delta t$ . We used the notation $\Phi^{(n)}$  The chapter begins with a discussion of the temporal discretization
8  when time interpolation is required to estimate the value of $\phi$  used in MITgcm. This discussion is followed by sections that
9  at the time $n \Delta t$.  describe the spatial discretization. The schemes employed for momentum
10    terms are described first, afterwards the schemes that apply to
11  \section{Time integration}  passive and dynamically active tracers are described.
12    
13  The discretization in time of the model equations (cf section I )  \input{s_algorithm/text/notation}
14  does not depend of the discretization in space of each  
15  term, so that this section can be read independently.  \section{Time-stepping}
16  Also for this purpose, we will refers to the continuous  \label{sec:time_stepping}
17  space-derivative form of model equations, and focus on  \begin{rawhtml}
18  the time discretization.  <!-- CMIREDIR:time-stepping: -->
19    \end{rawhtml}
20  The continuous form of the model equations is:  
21    The equations of motion integrated by the model involve four
22  \begin{eqnarray}  prognostic equations for flow, $u$ and $v$, temperature, $\theta$, and
23  \partial_t \theta & = & G_\theta  salt/moisture, $S$, and three diagnostic equations for vertical flow,
24  \label{eq-tCsC-theta}  $w$, density/buoyancy, $\rho$/$b$, and pressure/geo-potential,
25  \\  $\phi_{hyd}$. In addition, the surface pressure or height may by
26  \partial_t S & = & G_s  described by either a prognostic or diagnostic equation and if
27  \label{eq-tCsC-salt}  non-hydrostatics terms are included then a diagnostic equation for
28  \\  non-hydrostatic pressure is also solved. The combination of prognostic
29  b' & = & b'(\theta,S,r)  and diagnostic equations requires a model algorithm that can march
30  \\  forward prognostic variables while satisfying constraints imposed by
31  \partial_r \phi'_{hyd} & = & -b'  diagnostic equations.
32  \label{eq-tCsC-hyd}  
33  \\  Since the model comes in several flavors and formulation, it would be
34  \partial_t \vec{\bf v}  confusing to present the model algorithm exactly as written into code
35  + {\bf \nabla}_h b_s \eta  along with all the switches and optional terms. Instead, we present
36  + \epsilon_{nh} {\bf \nabla}_h \phi'_{nh}  the algorithm for each of the basic formulations which are:
37  & = & \vec{\bf G}_{\vec{\bf v}}  \begin{enumerate}
38  - {\bf \nabla}_h \phi'_{hyd}  \item the semi-implicit pressure method for hydrostatic equations
39  \label{eq-tCsC-Hmom}  with a rigid-lid, variables co-located in time and with
40  \\  Adams-Bashforth time-stepping, \label{it:a}
41  \epsilon_{nh} \frac {\partial{\dot{r}}}{\partial{t}}  \item as \ref{it:a}. but with an implicit linear free-surface, \label{it:b}
42  + \epsilon_{nh} \partial_r \phi'_{nh}  \item as \ref{it:a}. or \ref{it:b}. but with variables staggered in time,
43  & = & \epsilon_{nh} G_{\dot{r}}  \label{it:c}
44  \label{eq-tCsC-Vmom}  \item as \ref{it:a}. or \ref{it:b}. but with non-hydrostatic terms included,
45  \\  \item as \ref{it:b}. or \ref{it:c}. but with non-linear free-surface.
46  {\bf \nabla}_h \cdot \vec{\bf v} + \partial_r \dot{r}  \end{enumerate}
47  & = & 0  
48  \label{eq-tCsC-cont}  In all the above configurations it is also possible to substitute the
49    Adams-Bashforth with an alternative time-stepping scheme for terms
50    evaluated explicitly in time. Since the over-arching algorithm is
51    independent of the particular time-stepping scheme chosen we will
52    describe first the over-arching algorithm, known as the pressure
53    method, with a rigid-lid model in section
54    \ref{sec:pressure-method-rigid-lid}. This algorithm is essentially
55    unchanged, apart for some coefficients, when the rigid lid assumption
56    is replaced with a linearized implicit free-surface, described in
57    section \ref{sec:pressure-method-linear-backward}. These two flavors
58    of the pressure-method encompass all formulations of the model as it
59    exists today. The integration of explicit in time terms is out-lined
60    in section \ref{sec:adams-bashforth} and put into the context of the
61    overall algorithm in sections \ref{sec:adams-bashforth-sync} and
62    \ref{sec:adams-bashforth-staggered}. Inclusion of non-hydrostatic
63    terms requires applying the pressure method in three dimensions
64    instead of two and this algorithm modification is described in section
65    \ref{sec:non-hydrostatic}. Finally, the free-surface equation may be
66    treated more exactly, including non-linear terms, and this is
67    described in section \ref{sec:nonlinear-freesurface}.
68    
69    
70    \section{Pressure method with rigid-lid}
71    \label{sec:pressure-method-rigid-lid}
72    \begin{rawhtml}
73    <!-- CMIREDIR:pressure_method_rigid_lid: -->
74    \end{rawhtml}
75    
76    \begin{figure}
77    \begin{center}
78    \resizebox{4.0in}{!}{\includegraphics{s_algorithm/figs/pressure-method-rigid-lid.eps}}
79    \end{center}
80    \caption{
81    A schematic of the evolution in time of the pressure method
82    algorithm. A prediction for the flow variables at time level $n+1$ is
83    made based only on the explicit terms, $G^{(n+^1/_2)}$, and denoted
84    $u^*$, $v^*$. Next, a pressure field is found such that $u^{n+1}$,
85    $v^{n+1}$ will be non-divergent. Conceptually, the $*$ quantities
86    exist at time level $n+1$ but they are intermediate and only
87    temporary.}
88    \label{fig:pressure-method-rigid-lid}
89    \end{figure}
90    
91    \begin{figure}
92    \begin{center} \fbox{ \begin{minipage}{4.5in} \begin{tabbing}
93    aaa \= aaa \= aaa \= aaa \= aaa \= aaa \kill
94    \filelink{FORWARD\_STEP}{model-src-forward_step.F} \\
95    \> DYNAMICS \\
96    \>\> TIMESTEP \` $u^*$,$v^*$ (\ref{eq:ustar-rigid-lid},\ref{eq:vstar-rigid-lid}) \\
97    \> SOLVE\_FOR\_PRESSURE \\
98    \>\> CALC\_DIV\_GHAT \` $H\widehat{u^*}$,$H\widehat{v^*}$ (\ref{eq:elliptic}) \\
99    \>\> CG2D \` $\eta^{n+1}$ (\ref{eq:elliptic}) \\
100    \> MOMENTUM\_CORRECTION\_STEP  \\
101    \>\> CALC\_GRAD\_PHI\_SURF \` $\nabla \eta^{n+1}$ \\
102    \>\> CORRECTION\_STEP \` $u^{n+1}$,$v^{n+1}$ (\ref{eq:un+1-rigid-lid},\ref{eq:vn+1-rigid-lid})
103    \end{tabbing} \end{minipage} } \end{center}
104    \caption{Calling tree for the pressure method algorithm
105      (\filelink{FORWARD\_STEP}{model-src-forward_step.F})}
106    \label{fig:call-tree-pressure-method}
107    \end{figure}
108    
109    The horizontal momentum and continuity equations for the ocean
110    (\ref{eq:ocean-mom} and \ref{eq:ocean-cont}), or for the atmosphere
111    (\ref{eq:atmos-mom} and \ref{eq:atmos-cont}), can be summarized by:
112    \begin{eqnarray}
113    \partial_t u + g \partial_x \eta & = & G_u \\
114    \partial_t v + g \partial_y \eta & = & G_v \\
115    \partial_x u + \partial_y v + \partial_z w & = & 0
116  \end{eqnarray}  \end{eqnarray}
117  where  where we are adopting the oceanic notation for brevity. All terms in
118  \begin{eqnarray*}  the momentum equations, except for surface pressure gradient, are
119  G_\theta & = &  encapsulated in the $G$ vector. The continuity equation, when
120  - \vec{\bf v} \cdot {\bf \nabla} \theta + {\cal Q}_\theta  integrated over the fluid depth, $H$, and with the rigid-lid/no normal
121  \\  flow boundary conditions applied, becomes:
122  G_S & = &  \begin{equation}
123  - \vec{\bf v} \cdot {\bf \nabla} S + {\cal Q}_S  \partial_x H \widehat{u} + \partial_y H \widehat{v} = 0
124  \\  \label{eq:rigid-lid-continuity}
125  \vec{\bf G}_{\vec{\bf v}}  \end{equation}
126  & = &  Here, $H\widehat{u} = \int_H u dz$ is the depth integral of $u$,
127  - \vec{\bf v} \cdot {\bf \nabla} \vec{\bf v}  similarly for $H\widehat{v}$. The rigid-lid approximation sets $w=0$
128  - f \hat{\bf k} \wedge \vec{\bf v}  at the lid so that it does not move but allows a pressure to be
129  + \vec{\cal F}_{\vec{\bf v}}  exerted on the fluid by the lid. The horizontal momentum equations and
130  \\  vertically integrated continuity equation are be discretized in time
131  G_{\dot{r}}  and space as follows:
132  & = &  \begin{eqnarray}
133  - \vec{\bf v} \cdot {\bf \nabla} \dot{r}  u^{n+1} + \Delta t g \partial_x \eta^{n+1}
134  + {\cal F}_{\dot{r}}  & = & u^{n} + \Delta t G_u^{(n+1/2)}
135  \end{eqnarray*}  \label{eq:discrete-time-u}
136  The exact form of all the "{\it G}"s terms is described in the next  \\
137  section (). Here its sufficient to mention that they contains  v^{n+1} + \Delta t g \partial_y \eta^{n+1}
138  all the RHS terms except the pressure / geo- potential terms.  & = & v^{n} + \Delta t G_v^{(n+1/2)}
139    \label{eq:discrete-time-v}
140  The switch $\epsilon_{nh}$ allows to activate the non hydrostatic  \\
141  mode ($\epsilon_{nh}=1$) for the ocean model. Otherwise,    \partial_x H \widehat{u^{n+1}}
142  in the hydrostatic limit $\epsilon_{nh} = 0$  + \partial_y H \widehat{v^{n+1}} & = & 0
143  and equation \ref{eq-tCsC-Vmom} vanishes.  \label{eq:discrete-time-cont-rigid-lid}
144    \end{eqnarray}
145  The equation for $\eta$ is obtained by integrating the  As written here, terms on the LHS all involve time level $n+1$ and are
146  continuity equation over the entire depth of the fluid,  referred to as implicit; the implicit backward time stepping scheme is
147  from $R_{min}(x,y)$ up to $R_o(x,y)$  being used. All other terms in the RHS are explicit in time. The
148  (Linear free surface):  thermodynamic quantities are integrated forward in time in parallel
149  \begin{eqnarray}  with the flow and will be discussed later. For the purposes of
150  \epsilon_{fs} \partial_t \eta =  describing the pressure method it suffices to say that the hydrostatic
151  \left. \dot{r} \right|_{r=r_{surf}} + \epsilon_{fw} (P-E) =  pressure gradient is explicit and so can be included in the vector
152  - {\bf \nabla} \cdot \int_{R_{min}}^{R_o} \vec{\bf v} dr  $G$.
153  + \epsilon_{fw} (P-E)  
154  \label{eq-tCsC-eta}  Substituting the two momentum equations into the depth integrated
155  \end{eqnarray}  continuity equation eliminates $u^{n+1}$ and $v^{n+1}$ yielding an
156    elliptic equation for $\eta^{n+1}$. Equations
157  Where $\epsilon_{fs}$,$\epsilon_{fw}$ are two flags to  \ref{eq:discrete-time-u}, \ref{eq:discrete-time-v} and
158  distinguish between a free-surface equation ($\epsilon_{fs}=1$)  \ref{eq:discrete-time-cont-rigid-lid} can then be re-arranged as follows:
159  or the rigid-lid approximation ($\epsilon_{fs}=0$);    \begin{eqnarray}
160  and to distinguish when exchange of Fresh-Water is included  u^{*} & = & u^{n} + \Delta t G_u^{(n+1/2)} \label{eq:ustar-rigid-lid} \\
161  at the ocean surface (natural BC) ($\epsilon_{fw} = 1$)  v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-rigid-lid} \\
162  or not ($\epsilon_{fw} = 0$).    \partial_x \Delta t g H \partial_x \eta^{n+1}
163    + \partial_y \Delta t g H \partial_y \eta^{n+1}
 The hydrostatic potential is found by  
 integrating \ref{eq-tCsC-hyd} with the boundary condition that  
 $\phi'_{hyd}(r=R_o) = 0$:  
 \begin{eqnarray*}  
 & &  
 \int_{r'}^{R_o} \partial_r \phi'_{hyd} dr =  
 \left[ \phi'_{hyd} \right]_{r'}^{R_o} =  
 \int_{r'}^{R_o} - b' dr  
 \\  
 \Rightarrow & &  
 \phi'_{hyd}(x,y,r') = \int_{r'}^{R_o} b' dr  
 \end{eqnarray*}  
   
 \subsection{General method}  
   
 An overview of the general method is presented hereafter,  
 with explicit references to the Fortran code. This part  
 often refers to the discretized equations of the model  
 that are detailed in the following sections.  
   
 The general algorithm consist in  a "predictor step" that computes  
 the forward tendencies ("G" terms") and all  
 the "first guess" values (star notation):  
 $\theta^*, S^*, \vec{\bf v}^*$ (and $\dot{r}^*$  
 in non-hydrostatic mode). This is done in the two routines  
 {\it THERMODYNAMICS} and {\it DYNAMICS}.  
   
 Then the implicit terms that appear on the left hand side (LHS)  
 of equations \ref{eq-tDsC-theta} - \ref{eq-tDsC-cont},  
 are solved as follows:  
 Since implicit vertical diffusion and viscosity terms  
 are independent from the barotropic flow adjustment,  
 they are computed first, solving a 3 diagonal Nr x Nr linear system,  
 and incorporated at the end of the {\it THERMODYNAMICS} and  
 {\it DYNAMICS} routines.  
 Then the surface pressure and non hydrostatic pressure  
 are evaluated ({\it SOLVE\_FOR\_PRESSURE});  
   
 Finally, within a "corrector step',  
 (routine {\it THE\_CORRECTION\_STEP})  
 the new values of $u,v,w,\theta,S$  
 are derived according to the above equations  
 (see details in II.1.3).  
   
 At this point, the regular time step is over, but    
 the correction step contains also other optional  
 adjustments such as convective adjustment algorithm, or filters  
 (zonal FFT filter, shapiro filter)  
 that applied on both momentum and tracer fields.  
 just before setting the $n+1$ new time step value.  
   
 Since the pressure solver precision is of the order of  
 the "target residual" that could be lower than the  
 the computer truncation error, and also because some filters  
 might alter the divergence part of the flow field,  
 a final evaluation of the surface r anomaly $\eta^{n+1}$  
 is performed, according to \ref{eq-tDsC-eta} ({\it CALC\_EXACT\_ETA}).  
 This ensures a perfect volume conservation.  
 Note that there is no need for an equivalent Non-hydrostatic  
 "exact conservation" step, since W is already computed after  
 the filters applied.  
   
 Regarding optional forcing terms (usually part of a "package"),  
 that account for a specific source or sink term (e.g.: condensation  
 as a sink of water vapor Q), they are generally incorporated  
 in the main algorithm as follows;  
 At the the beginning of the time step,  
 the additional tendencies are computed  
 as function of the present state (time step $n$) and external forcing ;  
 Then within the main part of model,  
 only those new tendencies are added to the model variables.  
   
 [more details needed]\\  
   
 The atmospheric physics follows this general scheme.  
   
 [more about C\_grid, A\_grid conversion \& drag term]\\  
   
 \subsection{Standard synchronous time stepping}  
   
 In the standard formulation, the surface pressure is  
 evaluated at time step n+1 (implicit method).  
 The above set of equations is then discretized in time  
 as follows:  
 \begin{eqnarray}  
 \left[ 1 - \partial_r \kappa_v^\theta \partial_r \right]  
 \theta^{n+1} & = & \theta^*  
 \label{eq-tDsC-theta}  
 \\  
 \left[ 1 - \partial_r \kappa_v^S \partial_r \right]  
 S^{n+1} & = & S^*  
 \label{eq-tDsC-salt}  
 \\  
 %{b'}^{n} & = & b'(\theta^{n},S^{n},r)  
 %\partial_r {\phi'_{hyd}}^{n} & = & {-b'}^{n}  
 %\\  
 {\phi'_{hyd}}^{n} & = & \int_{r'}^{R_o} b'(\theta^{n},S^{n},r) dr  
 \label{eq-tDsC-hyd}  
 \\  
 \vec{\bf v} ^{n+1}  
 + \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}  
 + \epsilon_{nh} \Delta t {\bf \nabla} {\phi'_{nh}}^{n+1}  
 - \partial_r A_v \partial_r \vec{\bf v}^{n+1}  
164  & = &  & = &
165  \vec{\bf v}^*    \partial_x H \widehat{u^{*}}
166  \label{eq-tDsC-Hmom}  + \partial_y H \widehat{v^{*}} \label{eq:elliptic}
167  \\  \\
168  \epsilon_{fs} {\eta}^{n+1} + \Delta t  u^{n+1} & = & u^{*} - \Delta t g \partial_x \eta^{n+1} \label{eq:un+1-rigid-lid}\\
169  {\bf \nabla}_h \cdot \int_{R_{min}}^{R_o} \vec{\bf v}^{n+1} dr  v^{n+1} & = & v^{*} - \Delta t g \partial_y \eta^{n+1} \label{eq:vn+1-rigid-lid}
 & = &  
     \epsilon_{fs} {\eta}^{n} + \epsilon_{fw} \Delta_t (P-E)^{n}  
 \nonumber  
 \\  
 % = \epsilon_{fs} {\eta}^{n} & + & \epsilon_{fw} \Delta_t (P-E)^{n}  
 \label{eq-tDsC-eta}  
 \\  
 \epsilon_{nh} \left( \dot{r} ^{n+1}  
 + \Delta t \partial_r {\phi'_{nh}} ^{n+1}  
 \right)  
 & = & \epsilon_{nh} \dot{r}^*  
 \label{eq-tDsC-Vmom}  
 \\  
 {\bf \nabla}_h \cdot \vec{\bf v}^{n+1} + \partial_r \dot{r}^{n+1}  
 & = & 0  
 \label{eq-tDsC-cont}  
170  \end{eqnarray}  \end{eqnarray}
171  where  Equations \ref{eq:ustar-rigid-lid} to \ref{eq:vn+1-rigid-lid}, solved
172    sequentially, represent the pressure method algorithm used in the
173    model. The essence of the pressure method lies in the fact that any
174    explicit prediction for the flow would lead to a divergence flow field
175    so a pressure field must be found that keeps the flow non-divergent
176    over each step of the integration. The particular location in time of
177    the pressure field is somewhat ambiguous; in
178    Fig.~\ref{fig:pressure-method-rigid-lid} we depicted as co-located
179    with the future flow field (time level $n+1$) but it could equally
180    have been drawn as staggered in time with the flow.
181    
182    The correspondence to the code is as follows:
183    \begin{itemize}
184    \item
185    the prognostic phase, equations \ref{eq:ustar-rigid-lid} and \ref{eq:vstar-rigid-lid},
186    stepping forward $u^n$ and $v^n$ to $u^{*}$ and $v^{*}$ is coded in
187    \filelink{TIMESTEP()}{model-src-timestep.F}
188    \item
189    the vertical integration, $H \widehat{u^*}$ and $H
190    \widehat{v^*}$, divergence and inversion of the elliptic operator in
191    equation \ref{eq:elliptic} is coded in
192    \filelink{SOLVE\_FOR\_PRESSURE()}{model-src-solve_for_pressure.F}
193    \item
194    finally, the new flow field at time level $n+1$ given by equations
195    \ref{eq:un+1-rigid-lid} and \ref{eq:vn+1-rigid-lid} is calculated in
196    \filelink{CORRECTION\_STEP()}{model-src-correction_step.F}.
197    \end{itemize}
198    The calling tree for these routines is given in
199    Fig.~\ref{fig:call-tree-pressure-method}.
200    
201    
202    %\paragraph{Need to discuss implicit viscosity somewhere:}
203    In general, the horizontal momentum time-stepping can contain some terms
204    that are treated implicitly in time,
205    such as the vertical viscosity when using the backward time-stepping scheme
206    (\varlink{implicitViscosity}{implicitViscosity} {\it =.TRUE.}).
207    The method used to solve those implicit terms is provided in
208    section \ref{sec:implicit-backward-stepping}, and modifies
209    equations \ref{eq:discrete-time-u} and \ref{eq:discrete-time-v} to
210    give:
211  \begin{eqnarray}  \begin{eqnarray}
212  \theta^* & = &  u^{n+1} - \Delta t \partial_z A_v \partial_z u^{n+1}
213  \theta ^{n} + \Delta t G_{\theta} ^{(n+1/2)}  + \Delta t g \partial_x \eta^{n+1} & = & u^{n} + \Delta t G_u^{(n+1/2)}
 \\  
 S^* & = &  
 S ^{n} + \Delta t G_{S} ^{(n+1/2)}  
 \\  
 \vec{\bf v}^* & = &  
 \vec{\bf v}^{n} + \Delta t \vec{\bf G}_{\vec{\bf v}} ^{(n+1/2)}  
 + \Delta t  {\bf \nabla}_h {\phi'_{hyd}}^{(n+1/2)}  
214  \\  \\
215  \dot{r}^* & = &  v^{n+1} - \Delta t \partial_z A_v \partial_z v^{n+1}
216  \dot{r} ^{n} + \Delta t G_{\dot{r}} ^{(n+1/2)}  + \Delta t g \partial_y \eta^{n+1} & = & v^{n} + \Delta t G_v^{(n+1/2)}
217  \end{eqnarray}  \end{eqnarray}
218    
 Note that implicit vertical terms (viscosity and diffusivity) are  
 not considered as part of the "{\it G}" terms, but are  
 written separately here.  
   
 To ensure a second order time discretization for both  
 momentum and tracer,  
 The "{\it G}" terms are "extrapolated" forward in time  
 (Adams Bashforth time stepping)  
 from the values computed at time step $n$ and $n-1$  
 to the time $n+1/2$:  
 $$G^{(n+1/2)} = G^n + (1/2+\epsilon_{AB}) (G^n - G^{n-1})$$  
 A small number for the parameter $\epsilon_{AB}$ is generally used  
 to stabilize this time stepping.  
   
 In the standard non-stagger formulation,  
 the Adams-Bashforth time stepping is also applied to the  
 hydrostatic (pressure / geo-) potential term $\nabla_h \Phi'_{hyd}$.  
 Note that presently, this term is in fact incorporated to the  
 $\vec{\bf G}_{\vec{\bf v}}$ arrays ({\bf gU,gV}).  
   
 \subsection{Stagger baroclinic time stepping}  
   
 An alternative is to evaluate $\phi'_{hyd}$ with the  
 new tracer fields, and step forward the momentum after.  
 This option is known as stagger baroclinic time stepping,  
 since tracer and momentum are step forward in time one after the other.  
 It can be activated turning on a running flag parameter  
 {\bf staggerTimeStep} in file "{\it data}").  
   
 The main advantage of this time stepping compared to a synchronous one,  
 is a better stability, specially regarding internal gravity waves,  
 and a very natural implementation of a 2nd order in time  
 hydrostatic pressure / geo- potential term.  
 In the other hand, a synchronous time step might be  better  
 for convection problems; Its also make simpler time dependent forcing  
 and diagnostic implementation ; and allows a more efficient threading.  
   
 Although the stagger time step does not affect deeply the  
 structure of the code --- a switch allows to evaluate the  
 hydrostatic pressure / geo- potential from new $\theta,S$  
 instead of the Adams-Bashforth estimation ---  
 this affect the way the time discretization is presented :  
219    
220  \begin{eqnarray*}  \section{Pressure method with implicit linear free-surface}
221  \left[ 1 - \partial_r \kappa_v^\theta \partial_r \right]  \label{sec:pressure-method-linear-backward}
222  \theta^{n+1/2} & = & \theta^*  \begin{rawhtml}
223  \\  <!-- CMIREDIR:pressure_method_linear_backward: -->
224  \left[ 1 - \partial_r \kappa_v^S \partial_r \right]  \end{rawhtml}
225  S^{n+1/2} & = & S^*  
226  \end{eqnarray*}  The rigid-lid approximation filters out external gravity waves
227  with  subsequently modifying the dispersion relation of barotropic Rossby
228  \begin{eqnarray*}  waves. The discrete form of the elliptic equation has some zero
229  \theta^* & = &  eigen-values which makes it a potentially tricky or inefficient
230  \theta ^{(n-1/2)} + \Delta t G_{\theta} ^{(n)}  problem to solve.
231  \\  
232  S^* & = &  The rigid-lid approximation can be easily replaced by a linearization
233  S ^{(n-1/2)} + \Delta t G_{S} ^{(n)}  of the free-surface equation which can be written:
234  \end{eqnarray*}  \begin{equation}
235  And  \partial_t \eta + \partial_x H \widehat{u} + \partial_y H \widehat{v} = P-E+R
236  \begin{eqnarray*}  \label{eq:linear-free-surface=P-E}
237  %{b'}^{n+1/2} & = & b'(\theta^{n+1/2},S^{n+1/2},r)  \end{equation}
238  %\\  which differs from the depth integrated continuity equation with
239  %\partial_r {\phi'_{hyd}}^{n+1/2} & = & {-b'}^{n+1/2}  rigid-lid (\ref{eq:rigid-lid-continuity}) by the time-dependent term
240  {\phi'_{hyd}}^{n+1/2} & = & \int_{r'}^{R_o} b'(\theta^{n+1/2},S^{n+1/2},r) dr  and fresh-water source term.
241  %\label{eq-tDsC-hyd}  
242  \\  Equation \ref{eq:discrete-time-cont-rigid-lid} in the rigid-lid
243  \vec{\bf v} ^{n+1}  pressure method is then replaced by the time discretization of
244  + \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}  \ref{eq:linear-free-surface=P-E} which is:
245  + \epsilon_{nh} \Delta t {\bf \nabla}_h {\phi'_{nh}}^{n+1}  \begin{equation}
246  - \partial_r A_v \partial_r \vec{\bf v}^{n+1}  \eta^{n+1}
247  & = &  + \Delta t \partial_x H \widehat{u^{n+1}}
248  \vec{\bf v}^*  + \Delta t \partial_y H \widehat{v^{n+1}}
249  %\label{eq-tDsC-Hmom}  =
250    \eta^{n}
251    + \Delta t ( P - E )
252    \label{eq:discrete-time-backward-free-surface}
253    \end{equation}
254    where the use of flow at time level $n+1$ makes the method implicit
255    and backward in time. This is the preferred scheme since it still
256    filters the fast unresolved wave motions by damping them. A centered
257    scheme, such as Crank-Nicholson (see section \ref{sec:freesurf-CrankNick}),
258    would alias the energy of the fast modes onto slower modes of motion.
259    
260    As for the rigid-lid pressure method, equations
261    \ref{eq:discrete-time-u}, \ref{eq:discrete-time-v} and
262    \ref{eq:discrete-time-backward-free-surface} can be re-arranged as follows:
263    \begin{eqnarray}
264    u^{*} & = & u^{n} + \Delta t G_u^{(n+1/2)} \label{eq:ustar-backward-free-surface} \\
265    v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-backward-free-surface} \\
266    \eta^* & = & \epsilon_{fs} \left( \eta^{n} + \Delta t (P-E) \right)- \Delta t
267      \partial_x H \widehat{u^{*}}
268    + \partial_y H \widehat{v^{*}}
269    \\
270      \partial_x g H \partial_x \eta^{n+1}
271    & + & \partial_y g H \partial_y \eta^{n+1}
272     - \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2}
273     =
274    - \frac{\eta^*}{\Delta t^2}
275    \label{eq:elliptic-backward-free-surface}
276  \\  \\
277  \epsilon_{fs} {\eta}^{n+1} + \Delta t  u^{n+1} & = & u^{*} - \Delta t g \partial_x \eta^{n+1} \label{eq:un+1-backward-free-surface}\\
278  {\bf \nabla}_h \cdot \int_{R_{min}}^{R_o} \vec{\bf v}^{n+1} dr  v^{n+1} & = & v^{*} - \Delta t g \partial_y \eta^{n+1} \label{eq:vn+1-backward-free-surface}
279  & = &  \end{eqnarray}
280  \epsilon_{fs} {\eta}^{n} + \epsilon_{fw} \Delta_t (P-E)^{n}  Equations~\ref{eq:ustar-backward-free-surface}
281  \\  to~\ref{eq:vn+1-backward-free-surface}, solved sequentially, represent
282  \epsilon_{nh} \left( \dot{r} ^{n+1}  the pressure method algorithm with a backward implicit, linearized
283  + \Delta t \partial_r {\phi'_{nh}} ^{n+1}  free surface. The method is still formerly a pressure method because
284  \right)  in the limit of large $\Delta t$ the rigid-lid method is
285  & = & \epsilon_{nh} \dot{r}^*  recovered. However, the implicit treatment of the free-surface allows
286  %\label{eq-tDsC-Vmom}  the flow to be divergent and for the surface pressure/elevation to
287  \\  respond on a finite time-scale (as opposed to instantly). To recover
288  {\bf \nabla}_h \cdot \vec{\bf v}^{n+1} + \partial_r \dot{r}^{n+1}  the rigid-lid formulation, we introduced a switch-like parameter,
289  & = & 0  $\epsilon_{fs}$ (\varlink{freesurfFac}{freesurfFac}),
290  %\label{eq-tDsC-cont}  which selects between the free-surface and rigid-lid;
291  \end{eqnarray*}  $\epsilon_{fs}=1$ allows the free-surface to evolve; $\epsilon_{fs}=0$
292  with  imposes the rigid-lid. The evolution in time and location of variables
293    is exactly as it was for the rigid-lid model so that
294    Fig.~\ref{fig:pressure-method-rigid-lid} is still
295    applicable. Similarly, the calling sequence, given in
296    Fig.~\ref{fig:call-tree-pressure-method}, is as for the
297    pressure-method.
298    
299    
300    \section{Explicit time-stepping: Adams-Bashforth}
301    \label{sec:adams-bashforth}
302    \begin{rawhtml}
303    <!-- CMIREDIR:adams_bashforth: -->
304    \end{rawhtml}
305    
306    In describing the the pressure method above we deferred describing the
307    time discretization of the explicit terms. We have historically used
308    the quasi-second order Adams-Bashforth method for all explicit terms
309    in both the momentum and tracer equations. This is still the default
310    mode of operation but it is now possible to use alternate schemes for
311    tracers (see section \ref{sec:tracer-advection}).
312    
313    \begin{figure}
314    \begin{center} \fbox{ \begin{minipage}{4.5in} \begin{tabbing}
315    aaa \= aaa \= aaa \= aaa \= aaa \= aaa \kill
316    FORWARD\_STEP \\
317    \> THERMODYNAMICS \\
318    \>\> CALC\_GT \\
319    \>\>\> GAD\_CALC\_RHS \` $G_\theta^n = G_\theta( u, \theta^n )$ \\
320    \>either\>\> EXTERNAL\_FORCING \` $G_\theta^n = G_\theta^n + {\cal Q}$ \\
321    \>\>\> ADAMS\_BASHFORTH2 \` $G_\theta^{(n+1/2)}$ (\ref{eq:adams-bashforth2}) \\
322    \>or\>\> EXTERNAL\_FORCING \` $G_\theta^{(n+1/2)} = G_\theta^{(n+1/2)} + {\cal Q}$ \\
323    \>\> TIMESTEP\_TRACER \` $\tau^*$ (\ref{eq:taustar}) \\
324    \>\> IMPLDIFF \` $\tau^{(n+1)}$ (\ref{eq:tau-n+1-implicit})
325    \end{tabbing} \end{minipage} } \end{center}
326    \caption{
327    Calling tree for the Adams-Bashforth time-stepping of temperature with
328    implicit diffusion.
329      (\filelink{THERMODYNAMICS}{model-src-thermodynamics.F},
330       \filelink{ADAMS\_BASHFORTH2}{model-src-adams_bashforth2.F})}
331    \label{fig:call-tree-adams-bashforth}
332    \end{figure}
333    
334    In the previous sections, we summarized an explicit scheme as:
335    \begin{equation}
336    \tau^{*} = \tau^{n} + \Delta t G_\tau^{(n+1/2)}
337    \label{eq:taustar}
338    \end{equation}
339    where $\tau$ could be any prognostic variable ($u$, $v$, $\theta$ or
340    $S$) and $\tau^*$ is an explicit estimate of $\tau^{n+1}$ and would be
341    exact if not for implicit-in-time terms. The parenthesis about $n+1/2$
342    indicates that the term is explicit and extrapolated forward in time
343    and for this we use the quasi-second order Adams-Bashforth method:
344    \begin{equation}
345    G_\tau^{(n+1/2)} = ( 3/2 + \epsilon_{AB}) G_\tau^n
346    - ( 1/2 + \epsilon_{AB}) G_\tau^{n-1}
347    \label{eq:adams-bashforth2}
348    \end{equation}
349    This is a linear extrapolation, forward in time, to
350    $t=(n+1/2+{\epsilon_{AB}})\Delta t$. An extrapolation to the mid-point
351    in time, $t=(n+1/2)\Delta t$, corresponding to $\epsilon_{AB}=0$,
352    would be second order accurate but is weakly unstable for oscillatory
353    terms. A small but finite value for $\epsilon_{AB}$ stabilizes the
354    method. Strictly speaking, damping terms such as diffusion and
355    dissipation, and fixed terms (forcing), do not need to be inside the
356    Adams-Bashforth extrapolation. However, in the current code, it is
357    simpler to include these terms and this can be justified if the flow
358    and forcing evolves smoothly. Problems can, and do, arise when forcing
359    or motions are high frequency and this corresponds to a reduced
360    stability compared to a simple forward time-stepping of such terms.
361    The model offers the possibility to leave the tracer and momentum
362    forcing terms and the dissipation terms outside the
363    Adams-Bashforth extrapolation, by turning off the logical flags
364    \varlink{forcing\_In\_AB}{forcing_In_AB}
365    (parameter file {\em data}, namelist {\em PARM01}, default value = True).
366    (\varlink{tracForcingOutAB}{tracForcingOutAB}, default=0,
367    \varlink{momForcingOutAB}{momForcingOutAB}, default=0)
368    and \varlink{momDissip\_In\_AB}{momDissip_In_AB}
369    (parameter file {\em data}, namelist {\em PARM01}, default value = True).
370    respectively.
371    
372    A stability analysis for an oscillation equation should be given at this point.
373    \marginpar{AJA needs to find his notes on this...}
374    
375    A stability analysis for a relaxation equation should be given at this point.
376    \marginpar{...and for this too.}
377    
378    \begin{figure}
379    \begin{center}
380    \resizebox{5.5in}{!}{\includegraphics{s_algorithm/figs/oscil+damp_AB2.eps}}
381    \end{center}
382    \caption{
383    Oscillatory and damping response of
384    quasi-second order Adams-Bashforth scheme for different values
385    of the $\epsilon_{AB}$ parameter (0., 0.1, 0.25, from top to bottom)
386    The analytical solution (in black), the physical mode (in blue)
387    and the numerical mode (in red) are represented with a CFL
388    step of 0.1.
389    The left column represents the oscillatory response
390    on the complex plane for CFL ranging from 0.1 up to 0.9.
391    The right column represents the damping response amplitude
392    (y-axis) function of the CFL (x-axis).
393    }
394    \label{fig:adams-bashforth-respons}
395    \end{figure}
396    
397    
398    
399    \section{Implicit time-stepping: backward method}
400    \label{sec:implicit-backward-stepping}
401    \begin{rawhtml}
402    <!-- CMIREDIR:implicit_time-stepping_backward: -->
403    \end{rawhtml}
404    
405    Vertical diffusion and viscosity can be treated implicitly in time
406    using the backward method which is an intrinsic scheme.
407    Recently, the option to treat the vertical advection
408    implicitly has been added, but not yet tested; therefore,
409    the description hereafter is limited to diffusion and viscosity.
410    For tracers,
411    the time discretized equation is:
412    \begin{equation}
413    \tau^{n+1} - \Delta t \partial_r \kappa_v \partial_r \tau^{n+1} =
414    \tau^{n} + \Delta t G_\tau^{(n+1/2)}
415    \label{eq:implicit-diffusion}
416    \end{equation}
417    where $G_\tau^{(n+1/2)}$ is the remaining explicit terms extrapolated
418    using the Adams-Bashforth method as described above.  Equation
419    \ref{eq:implicit-diffusion} can be split split into:
420    \begin{eqnarray}
421    \tau^* & = & \tau^{n} + \Delta t G_\tau^{(n+1/2)}
422    \label{eq:taustar-implicit} \\
423    \tau^{n+1} & = & {\cal L}_\tau^{-1} ( \tau^* )
424    \label{eq:tau-n+1-implicit}
425    \end{eqnarray}
426    where ${\cal L}_\tau^{-1}$ is the inverse of the operator
427    \begin{equation}
428    {\cal L} = \left[ 1 + \Delta t \partial_r \kappa_v \partial_r \right]
429    \end{equation}
430    Equation \ref{eq:taustar-implicit} looks exactly as \ref{eq:taustar}
431    while \ref{eq:tau-n+1-implicit} involves an operator or matrix
432    inversion. By re-arranging \ref{eq:implicit-diffusion} in this way we
433    have cast the method as an explicit prediction step and an implicit
434    step allowing the latter to be inserted into the over all algorithm
435    with minimal interference.
436    
437    Fig.~\ref{fig:call-tree-adams-bashforth} shows the calling sequence for
438    stepping forward a tracer variable such as temperature.
439    
440    In order to fit within the pressure method, the implicit viscosity
441    must not alter the barotropic flow. In other words, it can only
442    redistribute momentum in the vertical. The upshot of this is that
443    although vertical viscosity may be backward implicit and
444    unconditionally stable, no-slip boundary conditions may not be made
445    implicit and are thus cast as a an explicit drag term.
446    
447    \section{Synchronous time-stepping: variables co-located in time}
448    \label{sec:adams-bashforth-sync}
449    \begin{rawhtml}
450    <!-- CMIREDIR:adams_bashforth_sync: -->
451    \end{rawhtml}
452    
453    \begin{figure}
454    \begin{center}
455    \resizebox{5.0in}{!}{\includegraphics{s_algorithm/figs/adams-bashforth-sync.eps}}
456    \end{center}
457    \caption{
458    A schematic of the explicit Adams-Bashforth and implicit time-stepping
459    phases of the algorithm. All prognostic variables are co-located in
460    time. Explicit tendencies are evaluated at time level $n$ as a
461    function of the state at that time level (dotted arrow). The explicit
462    tendency from the previous time level, $n-1$, is used to extrapolate
463    tendencies to $n+1/2$ (dashed arrow). This extrapolated tendency
464    allows variables to be stably integrated forward-in-time to render an
465    estimate ($*$-variables) at the $n+1$ time level (solid
466    arc-arrow). The operator ${\cal L}$ formed from implicit-in-time terms
467    is solved to yield the state variables at time level $n+1$. }
468    \label{fig:adams-bashforth-sync}
469    \end{figure}
470    
471    \begin{figure}
472    \begin{center} \fbox{ \begin{minipage}{4.7in} \begin{tabbing}
473    aaa \= aaa \= aaa \= aaa \= aaa \= aaa \kill
474    FORWARD\_STEP \\
475    \>\> EXTERNAL\_FIELDS\_LOAD\\
476    \>\> DO\_ATMOSPHERIC\_PHYS \\
477    \>\> DO\_OCEANIC\_PHYS \\
478    \> THERMODYNAMICS \\
479    \>\> CALC\_GT \\
480    \>\>\> GAD\_CALC\_RHS \` $G_\theta^n = G_\theta( u, \theta^n )$ (\ref{eq:Gt-n-sync})\\
481    \>\>\> EXTERNAL\_FORCING \` $G_\theta^n = G_\theta^n + {\cal Q}$ \\
482    \>\>\> ADAMS\_BASHFORTH2 \` $G_\theta^{(n+1/2)}$ (\ref{eq:Gt-n+5-sync}) \\
483    \>\> TIMESTEP\_TRACER \` $\theta^*$ (\ref{eq:tstar-sync}) \\
484    \>\> IMPLDIFF \` $\theta^{(n+1)}$ (\ref{eq:t-n+1-sync}) \\
485    \> DYNAMICS \\
486    \>\> CALC\_PHI\_HYD \` $\phi_{hyd}^n$ (\ref{eq:phi-hyd-sync}) \\
487    \>\> MOM\_FLUXFORM or MOM\_VECINV \` $G_{\vec{\bf v}}^n$ (\ref{eq:Gv-n-sync})\\
488    \>\> TIMESTEP \` $\vec{\bf v}^*$ (\ref{eq:Gv-n+5-sync}, \ref{eq:vstar-sync}) \\
489    \>\> IMPLDIFF \` $\vec{\bf v}^{**}$ (\ref{eq:vstarstar-sync}) \\
490    \> UPDATE\_R\_STAR or UPDATE\_SURF\_DR \` (NonLin-FS only)\\
491    \> SOLVE\_FOR\_PRESSURE \\
492    \>\> CALC\_DIV\_GHAT \` $\eta^*$ (\ref{eq:nstar-sync}) \\
493    \>\> CG2D \` $\eta^{n+1}$ (\ref{eq:elliptic-sync}) \\
494    \> MOMENTUM\_CORRECTION\_STEP  \\
495    \>\> CALC\_GRAD\_PHI\_SURF \` $\nabla \eta^{n+1}$ \\
496    \>\> CORRECTION\_STEP \` $u^{n+1}$,$v^{n+1}$ (\ref{eq:v-n+1-sync})\\
497    \> TRACERS\_CORRECTION\_STEP  \\
498    \>\> CYCLE\_TRACER \` $\theta^{n+1}$ \\
499    \>\> FILTER \` Shapiro Filter, Zonal Filter (FFT) \\
500    \>\> CONVECTIVE\_ADJUSTMENT \` \\
501    \end{tabbing} \end{minipage} } \end{center}
502    \caption{
503    Calling tree for the overall synchronous algorithm using
504    Adams-Bashforth time-stepping.
505    The place where the model geometry
506    ({\bf hFac} factors) is updated is added here but is only relevant
507    for the non-linear free-surface algorithm.
508    For completeness, the external forcing,
509    ocean and atmospheric physics have been added, although they are mainly
510    optional}
511    \label{fig:call-tree-adams-bashforth-sync}
512    \end{figure}
513    
514    The Adams-Bashforth extrapolation of explicit tendencies fits neatly
515    into the pressure method algorithm when all state variables are
516    co-located in time. Fig.~\ref{fig:adams-bashforth-sync} illustrates
517    the location of variables in time and the evolution of the algorithm
518    with time. The algorithm can be represented by the sequential solution
519    of the follow equations:
520    \begin{eqnarray}
521    G_{\theta,S}^{n} & = & G_{\theta,S} ( u^n, \theta^n, S^n )
522    \label{eq:Gt-n-sync} \\
523    G_{\theta,S}^{(n+1/2)} & = & (3/2+\epsilon_{AB}) G_{\theta,S}^{n}-(1/2+\epsilon_{AB}) G_{\theta,S}^{n-1}
524    \label{eq:Gt-n+5-sync} \\
525    (\theta^*,S^*) & = & (\theta^{n},S^{n}) + \Delta t G_{\theta,S}^{(n+1/2)}
526    \label{eq:tstar-sync} \\
527    (\theta^{n+1},S^{n+1}) & = & {\cal L}^{-1}_{\theta,S} (\theta^*,S^*)
528    \label{eq:t-n+1-sync} \\
529    \phi^n_{hyd} & = & \int b(\theta^n,S^n) dr
530    \label{eq:phi-hyd-sync} \\
531    \vec{\bf G}_{\vec{\bf v}}^{n} & = & \vec{\bf G}_{\vec{\bf v}} ( \vec{\bf v}^n, \phi^n_{hyd} )
532    \label{eq:Gv-n-sync} \\
533    \vec{\bf G}_{\vec{\bf v}}^{(n+1/2)} & = & (3/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n} - (1/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n-1}
534    \label{eq:Gv-n+5-sync} \\
535    \vec{\bf v}^{*} & = & \vec{\bf v}^{n} + \Delta t \vec{\bf G}_{\vec{\bf v}}^{(n+1/2)}
536    \label{eq:vstar-sync} \\
537    \vec{\bf v}^{**} & = & {\cal L}_{\vec{\bf v}}^{-1} ( \vec{\bf v}^* )
538    \label{eq:vstarstar-sync} \\
539    \eta^* & = & \epsilon_{fs} \left( \eta^{n} + \Delta t (P-E) \right)- \Delta t
540      \nabla \cdot H \widehat{ \vec{\bf v}^{**} }
541    \label{eq:nstar-sync} \\
542    \nabla \cdot g H \nabla \eta^{n+1} & - & \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2}
543    ~ = ~ - \frac{\eta^*}{\Delta t^2}
544    \label{eq:elliptic-sync} \\
545    \vec{\bf v}^{n+1} & = & \vec{\bf v}^{*} - \Delta t g \nabla \eta^{n+1}
546    \label{eq:v-n+1-sync}
547    \end{eqnarray}
548    Fig.~\ref{fig:adams-bashforth-sync} illustrates the location of
549    variables in time and evolution of the algorithm with time. The
550    Adams-Bashforth extrapolation of the tracer tendencies is illustrated
551    by the dashed arrow, the prediction at $n+1$ is indicated by the
552    solid arc. Inversion of the implicit terms, ${\cal
553    L}^{-1}_{\theta,S}$, then yields the new tracer fields at $n+1$. All
554    these operations are carried out in subroutine {\em THERMODYNAMICS} an
555    subsidiaries, which correspond to equations \ref{eq:Gt-n-sync} to
556    \ref{eq:t-n+1-sync}.
557    Similarly illustrated is the Adams-Bashforth extrapolation of
558    accelerations, stepping forward and solving of implicit viscosity and
559    surface pressure gradient terms, corresponding to equations
560    \ref{eq:Gv-n-sync} to \ref{eq:v-n+1-sync}.
561    These operations are carried out in subroutines {\em DYNAMCIS}, {\em
562    SOLVE\_FOR\_PRESSURE} and {\em MOMENTUM\_CORRECTION\_STEP}. This, then,
563    represents an entire algorithm for stepping forward the model one
564    time-step. The corresponding calling tree is given in
565    \ref{fig:call-tree-adams-bashforth-sync}.
566    
567    \section{Staggered baroclinic time-stepping}
568    \label{sec:adams-bashforth-staggered}
569    \begin{rawhtml}
570    <!-- CMIREDIR:adams_bashforth_staggered: -->
571    \end{rawhtml}
572    
573    \begin{figure}
574    \begin{center}
575    \resizebox{5.5in}{!}{\includegraphics{s_algorithm/figs/adams-bashforth-staggered.eps}}
576    \end{center}
577    \caption{
578    A schematic of the explicit Adams-Bashforth and implicit time-stepping
579    phases of the algorithm but with staggering in time of thermodynamic
580    variables with the flow.
581    Explicit momentum tendencies are evaluated at time level $n-1/2$ as a
582    function of the flow field at that time level $n-1/2$.
583    The explicit tendency from the previous time level, $n-3/2$, is used to
584    extrapolate tendencies to $n$ (dashed arrow).
585    The hydrostatic pressure/geo-potential $\phi_{hyd}$ is evaluated directly
586    at time level $n$ (vertical arrows) and used with the extrapolated tendencies
587    to step forward the flow variables from $n-1/2$ to $n+1/2$ (solid arc-arrow).
588    The implicit-in-time operator ${\cal L}_{\bf u,v}$ (vertical arrows) is
589    then applied to the previous estimation of the the flow field ($*$-variables)
590    and yields to the two velocity components $u,v$ at time level $n+1/2$.
591    These are then used to calculate the advection term (dashed arc-arrow)
592    of the thermo-dynamics tendencies at time step $n$.
593    The extrapolated thermodynamics tendency, from time level $n-1$ and $n$
594    to $n+1/2$, allows thermodynamic variables to be stably integrated
595    forward-in-time (solid arc-arrow) up to time level $n+1$.
596    }
597    \label{fig:adams-bashforth-staggered}
598    \end{figure}
599    
600    For well stratified problems, internal gravity waves may be the
601    limiting process for determining a stable time-step. In the
602    circumstance, it is more efficient to stagger in time the
603    thermodynamic variables with the flow
604    variables. Fig.~\ref{fig:adams-bashforth-staggered} illustrates the
605    staggering and algorithm. The key difference between this and
606    Fig.~\ref{fig:adams-bashforth-sync} is that the thermodynamic variables
607    are solved after the dynamics, using the recently updated flow field.
608    This essentially allows the gravity wave terms to leap-frog in
609    time giving second order accuracy and more stability.
610    
611    The essential change in the staggered algorithm is that the
612    thermodynamics solver is delayed from half a time step,
613    allowing the use of the most recent velocities to compute
614    the advection terms. Once the thermodynamics fields are
615    updated, the hydrostatic pressure is computed
616    to step forwrad the dynamics.
617    Note that the pressure gradient must also be taken out of the
618    Adams-Bashforth extrapolation. Also, retaining the integer time-levels,
619    $n$ and $n+1$, does not give a user the sense of where variables are
620    located in time.  Instead, we re-write the entire algorithm,
621    \ref{eq:Gt-n-sync} to \ref{eq:v-n+1-sync}, annotating the
622    position in time of variables appropriately:
623    \begin{eqnarray}
624    \phi^{n}_{hyd} & = & \int b(\theta^{n},S^{n}) dr
625    \label{eq:phi-hyd-staggered} \\
626    \vec{\bf G}_{\vec{\bf v}}^{n-1/2} & = & \vec{\bf G}_{\vec{\bf v}} ( \vec{\bf v}^{n-1/2} )
627    \label{eq:Gv-n-staggered} \\
628    \vec{\bf G}_{\vec{\bf v}}^{(n)} & = & (3/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n-1/2} - (1/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n-3/2}
629    \label{eq:Gv-n+5-staggered} \\
630    \vec{\bf v}^{*} & = & \vec{\bf v}^{n-1/2} + \Delta t \left( \vec{\bf G}_{\vec{\bf v}}^{(n)} - \nabla \phi_{hyd}^{n} \right)
631    \label{eq:vstar-staggered} \\
632    \vec{\bf v}^{**} & = & {\cal L}_{\vec{\bf v}}^{-1} ( \vec{\bf v}^* )
633    \label{eq:vstarstar-staggered} \\
634    \eta^* & = & \epsilon_{fs} \left( \eta^{n-1/2} + \Delta t (P-E)^n \right)- \Delta t
635      \nabla \cdot H \widehat{ \vec{\bf v}^{**} }
636    \label{eq:nstar-staggered} \\
637    \nabla \cdot g H \nabla \eta^{n+1/2} & - & \frac{\epsilon_{fs} \eta^{n+1/2}}{\Delta t^2}
638    ~ = ~ - \frac{\eta^*}{\Delta t^2}
639    \label{eq:elliptic-staggered} \\
640    \vec{\bf v}^{n+1/2} & = & \vec{\bf v}^{*} - \Delta t g \nabla \eta^{n+1/2}
641    \label{eq:v-n+1-staggered} \\
642    G_{\theta,S}^{n} & = & G_{\theta,S} ( u^{n+1/2}, \theta^{n}, S^{n} )
643    \label{eq:Gt-n-staggered} \\
644    G_{\theta,S}^{(n+1/2)} & = & (3/2+\epsilon_{AB}) G_{\theta,S}^{n}-(1/2+\epsilon_{AB}) G_{\theta,S}^{n-1}
645    \label{eq:Gt-n+5-staggered} \\
646    (\theta^*,S^*) & = & (\theta^{n},S^{n}) + \Delta t G_{\theta,S}^{(n+1/2)}
647    \label{eq:tstar-staggered} \\
648    (\theta^{n+1},S^{n+1}) & = & {\cal L}^{-1}_{\theta,S} (\theta^*,S^*)
649    \label{eq:t-n+1-staggered}
650    \end{eqnarray}
651    The corresponding calling tree is given in
652    \ref{fig:call-tree-adams-bashforth-staggered}.
653    The staggered algorithm is activated with the run-time flag
654    {\bf staggerTimeStep}{\em=.TRUE.} in parameter file {\em data},
655    namelist {\em PARM01}.
656    
657    \begin{figure}
658    \begin{center} \fbox{ \begin{minipage}{4.7in} \begin{tabbing}
659    aaa \= aaa \= aaa \= aaa \= aaa \= aaa \kill
660    FORWARD\_STEP \\
661    \>\> EXTERNAL\_FIELDS\_LOAD\\
662    \>\> DO\_ATMOSPHERIC\_PHYS \\
663    \>\> DO\_OCEANIC\_PHYS \\
664    \> DYNAMICS \\
665    \>\> CALC\_PHI\_HYD \` $\phi_{hyd}^n$ (\ref{eq:phi-hyd-staggered}) \\
666    \>\> MOM\_FLUXFORM or MOM\_VECINV \` $G_{\vec{\bf v}}^{n-1/2}$
667        (\ref{eq:Gv-n-staggered})\\
668    \>\> TIMESTEP \` $\vec{\bf v}^*$ (\ref{eq:Gv-n+5-staggered},
669                                      \ref{eq:vstar-staggered}) \\
670    \>\> IMPLDIFF \` $\vec{\bf v}^{**}$ (\ref{eq:vstarstar-staggered}) \\
671    \> UPDATE\_R\_STAR or UPDATE\_SURF\_DR \` (NonLin-FS only)\\
672    \> SOLVE\_FOR\_PRESSURE \\
673    \>\> CALC\_DIV\_GHAT \` $\eta^*$ (\ref{eq:nstar-staggered}) \\
674    \>\> CG2D \` $\eta^{n+1/2}$ (\ref{eq:elliptic-staggered}) \\
675    \> MOMENTUM\_CORRECTION\_STEP  \\
676    \>\> CALC\_GRAD\_PHI\_SURF \` $\nabla \eta^{n+1/2}$ \\
677    \>\> CORRECTION\_STEP \` $u^{n+1/2}$,$v^{n+1/2}$ (\ref{eq:v-n+1-staggered})\\
678    \> THERMODYNAMICS \\
679    \>\> CALC\_GT \\
680    \>\>\> GAD\_CALC\_RHS \` $G_\theta^n = G_\theta( u, \theta^n )$
681         (\ref{eq:Gt-n-staggered})\\
682    \>\>\> EXTERNAL\_FORCING \` $G_\theta^n = G_\theta^n + {\cal Q}$ \\
683    \>\>\> ADAMS\_BASHFORTH2 \` $G_\theta^{(n+1/2)}$ (\ref{eq:Gt-n+5-staggered}) \\
684    \>\> TIMESTEP\_TRACER \` $\theta^*$ (\ref{eq:tstar-staggered}) \\
685    \>\> IMPLDIFF \` $\theta^{(n+1)}$ (\ref{eq:t-n+1-staggered}) \\
686    \> TRACERS\_CORRECTION\_STEP  \\
687    \>\> CYCLE\_TRACER \` $\theta^{n+1}$ \\
688    \>\> FILTER \` Shapiro Filter, Zonal Filter (FFT) \\
689    \>\> CONVECTIVE\_ADJUSTMENT \` \\
690    \end{tabbing} \end{minipage} } \end{center}
691    \caption{
692    Calling tree for the overall staggered algorithm using
693    Adams-Bashforth time-stepping.
694    The place where the model geometry
695    ({\bf hFac} factors) is updated is added here but is only relevant
696    for the non-linear free-surface algorithm.
697    }
698    \label{fig:call-tree-adams-bashforth-staggered}
699    \end{figure}
700    
701    The only difficulty with this approach is apparent in equation
702    \ref{eq:Gt-n-staggered} and illustrated by the dotted arrow
703    connecting $u,v^{n+1/2}$ with $G_\theta^{n}$. The flow used to advect
704    tracers around is not naturally located in time. This could be avoided
705    by applying the Adams-Bashforth extrapolation to the tracer field
706    itself and advecting that around but this approach is not yet
707    available. We're not aware of any detrimental effect of this
708    feature. The difficulty lies mainly in interpretation of what
709    time-level variables and terms correspond to.
710    
711    
712    \section{Non-hydrostatic formulation}
713    \label{sec:non-hydrostatic}
714    \begin{rawhtml}
715    <!-- CMIREDIR:non-hydrostatic_formulation: -->
716    \end{rawhtml}
717    
718    The non-hydrostatic formulation re-introduces the full vertical
719    momentum equation and requires the solution of a 3-D elliptic
720    equations for non-hydrostatic pressure perturbation. We still
721    intergrate vertically for the hydrostatic pressure and solve a 2-D
722    elliptic equation for the surface pressure/elevation for this reduces
723    the amount of work needed to solve for the non-hydrostatic pressure.
724    
725    The momentum equations are discretized in time as follows:
726    \begin{eqnarray}
727    \frac{1}{\Delta t} u^{n+1} + g \partial_x \eta^{n+1} + \partial_x \phi_{nh}^{n+1}
728    & = & \frac{1}{\Delta t} u^{n} + G_u^{(n+1/2)} \label{eq:discrete-time-u-nh} \\
729    \frac{1}{\Delta t} v^{n+1} + g \partial_y \eta^{n+1} + \partial_y \phi_{nh}^{n+1}
730    & = & \frac{1}{\Delta t} v^{n} + G_v^{(n+1/2)} \label{eq:discrete-time-v-nh} \\
731    \frac{1}{\Delta t} w^{n+1} + \partial_r \phi_{nh}^{n+1}
732    & = & \frac{1}{\Delta t} w^{n} + G_w^{(n+1/2)} \label{eq:discrete-time-w-nh}
733    \end{eqnarray}
734    which must satisfy the discrete-in-time depth integrated continuity,
735    equation~\ref{eq:discrete-time-backward-free-surface} and the local continuity equation
736    \begin{equation}
737    \partial_x u^{n+1} + \partial_y v^{n+1} + \partial_r w^{n+1} = 0
738    \label{eq:non-divergence-nh}
739    \end{equation}
740    As before, the explicit predictions for momentum are consolidated as:
741  \begin{eqnarray*}  \begin{eqnarray*}
742  \vec{\bf v}^* & = &  u^* & = & u^n + \Delta t G_u^{(n+1/2)} \\
743  \vec{\bf v} ^{n} + \Delta t \vec{\bf G}_{\vec{\bf v}} ^{(n+1/2)}  v^* & = & v^n + \Delta t G_v^{(n+1/2)} \\
744  + \Delta t  {\bf \nabla}_h {\phi'_{hyd}}^{n+1/2}  w^* & = & w^n + \Delta t G_w^{(n+1/2)}
 \\  
 \dot{r}^* & = &  
 \dot{r} ^{n} + \Delta t G_{\dot{r}} ^{(n+1/2)}  
745  \end{eqnarray*}  \end{eqnarray*}
746    but this time we introduce an intermediate step by splitting the
747    tendancy of the flow as follows:
748    \begin{eqnarray}
749    u^{n+1} = u^{**} - \Delta t \partial_x \phi_{nh}^{n+1}
750    & &
751    u^{**} = u^{*} - \Delta t g \partial_x \eta^{n+1} \\
752    v^{n+1} = v^{**} - \Delta t \partial_y \phi_{nh}^{n+1}
753    & &
754    v^{**} = v^{*} - \Delta t g \partial_y \eta^{n+1}
755    \end{eqnarray}
756    Substituting into the depth integrated continuity
757    (equation~\ref{eq:discrete-time-backward-free-surface}) gives
758    \begin{equation}
759    \partial_x H \partial_x \left( g \eta^{n+1} + \widehat{\phi}_{nh}^{n+1} \right)
760    +
761    \partial_y H \partial_y \left( g \eta^{n+1} + \widehat{\phi}_{nh}^{n+1} \right)
762     - \frac{\epsilon_{fs}\eta^*}{\Delta t^2}
763    = - \frac{\eta^*}{\Delta t^2}
764    \end{equation}
765    which is approximated by equation
766    \ref{eq:elliptic-backward-free-surface} on the basis that i)
767    $\phi_{nh}^{n+1}$ is not yet known and ii) $\nabla \widehat{\phi}_{nh}
768    << g \nabla \eta$. If \ref{eq:elliptic-backward-free-surface} is
769    solved accurately then the implication is that $\widehat{\phi}_{nh}
770    \approx 0$ so that thet non-hydrostatic pressure field does not drive
771    barotropic motion.
772    
773    The flow must satisfy non-divergence
774    (equation~\ref{eq:non-divergence-nh}) locally, as well as depth
775    integrated, and this constraint is used to form a 3-D elliptic
776    equations for $\phi_{nh}^{n+1}$:
777    \begin{equation}
778    \partial_{xx} \phi_{nh}^{n+1} + \partial_{yy} \phi_{nh}^{n+1} +
779    \partial_{rr} \phi_{nh}^{n+1} =
780    \partial_x u^{**} + \partial_y v^{**} + \partial_r w^{*}
781    \end{equation}
782    
783  %---------------------------------------------------------------------  The entire algorithm can be summarized as the sequential solution of
784    the following equations:
785    \begin{eqnarray}
786    u^{*} & = & u^{n} + \Delta t G_u^{(n+1/2)} \label{eq:ustar-nh} \\
787    v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-nh} \\
788    w^{*} & = & w^{n} + \Delta t G_w^{(n+1/2)} \label{eq:wstar-nh} \\
789    \eta^* ~ = ~ \epsilon_{fs} \left( \eta^{n} + \Delta t (P-E) \right)
790    & - & \Delta t
791      \partial_x H \widehat{u^{*}}
792    + \partial_y H \widehat{v^{*}}
793    \\
794      \partial_x g H \partial_x \eta^{n+1}
795    + \partial_y g H \partial_y \eta^{n+1}
796    & - & \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2}
797    ~ = ~
798    - \frac{\eta^*}{\Delta t^2}
799    \label{eq:elliptic-nh}
800    \\
801    u^{**} & = & u^{*} - \Delta t g \partial_x \eta^{n+1} \label{eq:unx-nh}\\
802    v^{**} & = & v^{*} - \Delta t g \partial_y \eta^{n+1} \label{eq:vnx-nh}\\
803    \partial_{xx} \phi_{nh}^{n+1} + \partial_{yy} \phi_{nh}^{n+1} +
804    \partial_{rr} \phi_{nh}^{n+1} & = &
805    \partial_x u^{**} + \partial_y v^{**} + \partial_r w^{*}  \label{eq:phi-nh}\\
806    u^{n+1} & = & u^{**} - \Delta t \partial_x \phi_{nh}^{n+1} \label{eq:un+1-nh}\\
807    v^{n+1} & = & v^{**} - \Delta t \partial_y \phi_{nh}^{n+1} \label{eq:vn+1-nh}\\
808    \partial_r w^{n+1} & = & - \partial_x u^{n+1} - \partial_y v^{n+1}
809    \end{eqnarray}
810    where the last equation is solved by vertically integrating for
811    $w^{n+1}$.
812    
 \subsection{Surface pressure}  
813    
814  Substituting \ref{eq-tDsC-Hmom} into \ref{eq-tDsC-cont}, assuming  
815  $\epsilon_{nh} = 0$ yields a Helmholtz equation for ${\eta}^{n+1}$:  \section{Variants on the Free Surface}
816    \label{sec:free-surface}
817    
818    We now describe the various formulations of the free-surface that
819    include non-linear forms, implicit in time using Crank-Nicholson,
820    explicit and [one day] split-explicit. First, we'll reiterate the
821    underlying algorithm but this time using the notation consistent with
822    the more general vertical coordinate $r$. The elliptic equation for
823    free-surface coordinate (units of $r$), corresponding to
824    \ref{eq:discrete-time-backward-free-surface}, and
825    assuming no non-hydrostatic effects ($\epsilon_{nh} = 0$) is:
826  \begin{eqnarray}  \begin{eqnarray}
827  \epsilon_{fs} {\eta}^{n+1} -  \epsilon_{fs} {\eta}^{n+1} -
828  {\bf \nabla}_h \cdot \Delta t^2 (R_o-R_{min})  {\bf \nabla}_h \cdot \Delta t^2 (R_o-R_{fixed}) {\bf \nabla}_h b_s
829  {\bf \nabla}_h b_s {\eta}^{n+1}  {\eta}^{n+1} = {\eta}^*
 = {\eta}^*  
830  \label{eq-solve2D}  \label{eq-solve2D}
831  \end{eqnarray}  \end{eqnarray}
832  where  where
833  \begin{eqnarray}  \begin{eqnarray}
834  {\eta}^* = \epsilon_{fs} \: {\eta}^{n} -  {\eta}^* = \epsilon_{fs} \: {\eta}^{n} -
835  \Delta t {\bf \nabla}_h \cdot \int_{R_{min}}^{R_o} \vec{\bf v}^* dr  \Delta t {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o} \vec{\bf v}^* dr
836  \: + \: \epsilon_{fw} \Delta_t (P-E)^{n}  \: + \: \epsilon_{fw} \Delta t (P-E)^{n}
837  \label{eq-solve2D_rhs}  \label{eq-solve2D_rhs}
838  \end{eqnarray}  \end{eqnarray}
839    
840  Once ${\eta}^{n+1}$ has been found substituting into \ref{eq-tDsC-Hmom}  \fbox{ \begin{minipage}{4.75in}
841  would yield $\vec{\bf v}^{n+1}$ if the model is hydrostatic  {\em S/R SOLVE\_FOR\_PRESSURE} ({\em solve\_for\_pressure.F})
842  ($\epsilon_{nh}=0$):  
843    $u^*$: {\bf gU} ({\em DYNVARS.h})
844    
845    $v^*$: {\bf gV} ({\em DYNVARS.h})
846    
847    $\eta^*$: {\bf cg2d\_b} (\em SOLVE\_FOR\_PRESSURE.h)
848    
849    $\eta^{n+1}$: {\bf etaN} (\em DYNVARS.h)
850    
851    \end{minipage} }
852    
853    
854    Once ${\eta}^{n+1}$ has been found, substituting into
855    \ref{eq:discrete-time-u}, \ref{eq:discrete-time-v} yields $\vec{\bf v}^{n+1}$
856    if the model is hydrostatic ($\epsilon_{nh}=0$):
857  $$  $$
858  \vec{\bf v}^{n+1} = \vec{\bf v}^{*}  \vec{\bf v}^{n+1} = \vec{\bf v}^{*}
859  - \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}  - \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}
# Line 366  $$ Line 861  $$
861    
862  This is known as the correction step. However, when the model is  This is known as the correction step. However, when the model is
863  non-hydrostatic ($\epsilon_{nh}=1$) we need an additional step and an  non-hydrostatic ($\epsilon_{nh}=1$) we need an additional step and an
864  additional equation for $\phi'_{nh}$. This is obtained by  additional equation for $\phi'_{nh}$. This is obtained by substituting
865  substituting \ref{eq-tDsC-Hmom} and \ref{eq-tDsC-Vmom} into  \ref{eq:discrete-time-u-nh}, \ref{eq:discrete-time-v-nh} and \ref{eq:discrete-time-w-nh}
866  \ref{eq-tDsC-cont}:  into continuity:
867  \begin{equation}  \begin{equation}
868  \left[ {\bf \nabla}_h^2 + \partial_{rr} \right] {\phi'_{nh}}^{n+1}  \left[ {\bf \nabla}_h^2 + \partial_{rr} \right] {\phi'_{nh}}^{n+1}
869  = \frac{1}{\Delta t} \left(  = \frac{1}{\Delta t} \left(
# Line 389  Finally, the horizontal velocities at th Line 884  Finally, the horizontal velocities at th
884  - \epsilon_{nh} \Delta t {\bf \nabla}_h {\phi'_{nh}}^{n+1}  - \epsilon_{nh} \Delta t {\bf \nabla}_h {\phi'_{nh}}^{n+1}
885  \end{equation}  \end{equation}
886  and the vertical velocity is found by integrating the continuity  and the vertical velocity is found by integrating the continuity
887  equation vertically.  equation vertically.  Note that, for the convenience of the restart
888  Note that, for convenience regarding the restart procedure,  procedure, the vertical integration of the continuity equation has
889  the integration of the continuity equation has been  been moved to the beginning of the time step (instead of at the end),
 moved at the beginning of the time step (instead of at the end),  
890  without any consequence on the solution.  without any consequence on the solution.
891    
892  Regarding the implementation, all those computation are done  \fbox{ \begin{minipage}{4.75in}
893  within the routine {\it SOLVE\_FOR\_PRESSURE} and its dependent  {\em S/R CORRECTION\_STEP} ({\em correction\_step.F})
894  {\it CALL}s.  
895  The standard method to solve the 2D elliptic problem (\ref{eq-solve2D})  $\eta^{n+1}$: {\bf etaN} (\em DYNVARS.h)
896  uses the conjugate gradient method (routine {\it CG2D}); The  
897  the solver matrix and conjugate gradient operator are only function  $\phi_{nh}^{n+1}$: {\bf phi\_nh} (\em NH\_VARS.h)
898  of the discretized domain and are therefore evaluated separately,  
899  before the time iteration loop, within {\it INI\_CG2D}.  $u^*$: {\bf gU} ({\em DYNVARS.h})
900  The computation of the RHS $\eta^*$ is partly  
901  done in {\it CALC\_DIV\_GHAT} and in {\it SOLVE\_FOR\_PRESSURE}.  $v^*$: {\bf gV} ({\em DYNVARS.h})
902    
903  The same method is applied for the non hydrostatic part, using  $u^{n+1}$: {\bf uVel} ({\em DYNVARS.h})
904  a conjugate gradient 3D solver ({\it CG3D}) that is initialized  
905  in {\it INI\_CG3D}. The RHS terms of 2D and 3D problems  $v^{n+1}$: {\bf vVel} ({\em DYNVARS.h})
906  are computed together, within the same part of the code.  
907    \end{minipage} }
908    
909    
910    
911    Regarding the implementation of the surface pressure solver, all
912    computation are done within the routine {\it SOLVE\_FOR\_PRESSURE} and
913    its dependent calls.  The standard method to solve the 2D elliptic
914    problem (\ref{eq-solve2D}) uses the conjugate gradient method (routine
915    {\it CG2D}); the solver matrix and conjugate gradient operator are
916    only function of the discretized domain and are therefore evaluated
917    separately, before the time iteration loop, within {\it INI\_CG2D}.
918    The computation of the RHS $\eta^*$ is partly done in {\it
919    CALC\_DIV\_GHAT} and in {\it SOLVE\_FOR\_PRESSURE}.
920    
921    The same method is applied for the non hydrostatic part, using a
922    conjugate gradient 3D solver ({\it CG3D}) that is initialized in {\it
923    INI\_CG3D}. The RHS terms of 2D and 3D problems are computed together
924    at the same point in the code.
925    
926    
927    
 \newpage  
 %-----------------------------------------------------------------------------------  
928  \subsection{Crank-Nickelson barotropic time stepping}  \subsection{Crank-Nickelson barotropic time stepping}
929    \label{sec:freesurf-CrankNick}
930    
931  The full implicit time stepping described previously is unconditionally stable  The full implicit time stepping described previously is
932  but damps the fast gravity waves, resulting in a loss of  unconditionally stable but damps the fast gravity waves, resulting in
933  gravity potential energy.  a loss of potential energy.  The modification presented now allows one
934  The modification presented hereafter allows to combine an implicit part  to combine an implicit part ($\beta,\gamma$) and an explicit part
935  ($\beta,\gamma$) and an explicit part ($1-\beta,1-\gamma$) for the surface  ($1-\beta,1-\gamma$) for the surface pressure gradient ($\beta$) and
936  pressure gradient ($\beta$) and for the barotropic flow divergence ($\gamma$).  for the barotropic flow divergence ($\gamma$).
937  \\  \\
938  For instance, $\beta=\gamma=1$ is the previous fully implicit scheme;  For instance, $\beta=\gamma=1$ is the previous fully implicit scheme;
939  $\beta=\gamma=1/2$ is the non damping (energy conserving), unconditionally  $\beta=\gamma=1/2$ is the non damping (energy conserving), unconditionally
# Line 428  stable, Crank-Nickelson scheme; $(\beta, Line 941  stable, Crank-Nickelson scheme; $(\beta,
941  corresponds to the forward - backward scheme that conserves energy but is  corresponds to the forward - backward scheme that conserves energy but is
942  only stable for small time steps.\\  only stable for small time steps.\\
943  In the code, $\beta,\gamma$ are defined as parameters, respectively  In the code, $\beta,\gamma$ are defined as parameters, respectively
944  {\it implicSurfPress}, {\it implicDiv2DFlow}. They are read from  {\bf implicSurfPress}, {\bf implicDiv2DFlow}. They are read from
945  the main data file "{\it data}" and are set by default to 1,1.  the main parameter file "{\em data}" and are set by default to 1,1.
946    
947  Equations \ref{eq-tDsC-Hmom} and \ref{eq-tDsC-eta} are modified as follows:  Equations \ref{eq:ustar-backward-free-surface} --
948  $$  \ref{eq:vn+1-backward-free-surface} are modified as follows:
949    \begin{eqnarray*}
950  \frac{ \vec{\bf v}^{n+1} }{ \Delta t }  \frac{ \vec{\bf v}^{n+1} }{ \Delta t }
951  + {\bf \nabla}_h b_s [ \beta {\eta}^{n+1} + (1-\beta) {\eta}^{n} ]  + {\bf \nabla}_h b_s [ \beta {\eta}^{n+1} + (1-\beta) {\eta}^{n} ]
952  + \epsilon_{nh} {\bf \nabla}_h {\phi'_{nh}}^{n+1}  + \epsilon_{nh} {\bf \nabla}_h {\phi'_{nh}}^{n+1}
953   = \frac{ \vec{\bf v}^* }{ \Delta t }   = \frac{ \vec{\bf v}^* }{ \Delta t }
954  $$  \end{eqnarray*}
955  $$  \begin{eqnarray}
956  \epsilon_{fs} \frac{ {\eta}^{n+1} - {\eta}^{n} }{ \Delta t}  \epsilon_{fs} \frac{ {\eta}^{n+1} - {\eta}^{n} }{ \Delta t}
957  + {\bf \nabla}_h \cdot \int_{R_{min}}^{R_o}  + {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o}
958  [ \gamma \vec{\bf v}^{n+1} + (1-\gamma) \vec{\bf v}^{n}] dr  [ \gamma \vec{\bf v}^{n+1} + (1-\gamma) \vec{\bf v}^{n}] dr
959  = \epsilon_{fw} (P-E)  = \epsilon_{fw} (P-E)
960  $$  \label{eq:eta-n+1-CrankNick}
961    \end{eqnarray}
962  where:  where:
963  \begin{eqnarray*}  \begin{eqnarray*}
964  \vec{\bf v}^* & = &  \vec{\bf v}^* & = &
# Line 453  where: Line 968  where:
968  \\  \\
969  {\eta}^* & = &  {\eta}^* & = &
970  \epsilon_{fs} {\eta}^{n} + \epsilon_{fw} \Delta t (P-E)  \epsilon_{fs} {\eta}^{n} + \epsilon_{fw} \Delta t (P-E)
971  - \Delta t {\bf \nabla}_h \cdot \int_{R_{min}}^{R_o}  - \Delta t {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o}
972  [ \gamma \vec{\bf v}^* + (1-\gamma) \vec{\bf v}^{n}] dr  [ \gamma \vec{\bf v}^* + (1-\gamma) \vec{\bf v}^{n}] dr
973  \end{eqnarray*}  \end{eqnarray*}
974  \\  \\
975  In the hydrostatic case ($\epsilon_{nh}=0$),  In the hydrostatic case ($\epsilon_{nh}=0$), allowing us to find
976  this allow to find ${\eta}^{n+1}$, according to:  ${\eta}^{n+1}$, thus:
977  $$  $$
978  \epsilon_{fs} {\eta}^{n+1} -  \epsilon_{fs} {\eta}^{n+1} -
979  {\bf \nabla}_h \cdot \beta\gamma \Delta t^2 b_s (R_o - R_{min})  {\bf \nabla}_h \cdot \beta\gamma \Delta t^2 b_s (R_o - R_{fixed})
980  {\bf \nabla}_h {\eta}^{n+1}  {\bf \nabla}_h {\eta}^{n+1}
981  = {\eta}^*  = {\eta}^*
982  $$  $$
983  and then to compute (correction step):  and then to compute ({\em CORRECTION\_STEP}):
984  $$  $$
985  \vec{\bf v}^{n+1} = \vec{\bf v}^{*}  \vec{\bf v}^{n+1} = \vec{\bf v}^{*}
986  - \beta \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}  - \beta \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}
987  $$  $$
988    
989  The non-hydrostatic part is solved as described previously.  %The non-hydrostatic part is solved as described previously.
990  \\ \\  
991  N.B:  \noindent
992  \\  Notes:
993   a) The non-hydrostatic part of the code has not yet been  \begin{enumerate}
994  updated, %since it falls out of the purpose of this test,  \item The RHS term of equation \ref{eq:eta-n+1-CrankNick}
995  so that this option cannot be used with $(\beta,\gamma) \neq (1,1)$.  corresponds the contribution of fresh water flux (P-E)
996  \\  to the free-surface variations ($\epsilon_{fw}=1$,
997  b) To remind, the stability criteria with the Crank-Nickelson time stepping  {\bf useRealFreshWater}{\em=TRUE} in parameter file {\em data}).
998  for the pure linear gravity wave problem in cartesian coordinate is:  In order to remain consistent with the tracer equation, specially in
999  \\  the non-linear free-surface formulation, this term is also
1000  $\star$~ $\beta + \gamma < 1$ : unstable  affected by the Crank-Nickelson time stepping. The RHS reads:
1001  \\  $\epsilon_{fw} ( \gamma (P-E)^{n+1/2} + (1-\gamma) (P-E)^{n-1/2} )$
1002  $\star$~ $\beta \geq 1/2$ and $ \gamma \geq 1/2$ : stable  \item The non-hydrostatic part of the code has not yet been
1003  \\  updated, and therefore cannot be used with $(\beta,\gamma) \neq (1,1)$.
1004  $\star$~ $\beta + \gamma \geq 1$ : stable if  \item The stability criteria with Crank-Nickelson time stepping
1005  %, for all wave length $(k\Delta x,l\Delta y)$  for the pure linear gravity wave problem in cartesian coordinates is:
1006    \begin{itemize}
1007    \item $\beta + \gamma < 1$ : unstable
1008    \item $\beta \geq 1/2$ and $ \gamma \geq 1/2$ : stable
1009    \item $\beta + \gamma \geq 1$ : stable if
1010  $$  $$
1011  c_{max}^2 (\beta - 1/2)(\gamma - 1/2) + 1 \geq 0  c_{max}^2 (\beta - 1/2)(\gamma - 1/2) + 1 \geq 0
1012  $$  $$
# Line 502  $$ Line 1021  $$
1021  c_{max} =  2 \Delta t \: \sqrt{g H} \:  c_{max} =  2 \Delta t \: \sqrt{g H} \:
1022  \sqrt{ \frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} }  \sqrt{ \frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} }
1023  $$  $$
1024    \end{itemize}
1025    \end{enumerate}
1026    

Legend:
Removed from v.1.4  
changed lines
  Added in v.1.28

  ViewVC Help
Powered by ViewVC 1.1.22