/[MITgcm]/manual/s_algorithm/text/time_stepping.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/time_stepping.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.2 by jmc, Thu Aug 9 16:22:09 2001 UTC revision 1.3 by jmc, Thu Aug 9 20:06:18 2001 UTC
# Line 8  at time $t = n \Delta t$ . We used the n Line 8  at time $t = n \Delta t$ . We used the n
8  when time interpolation is required to estimate the value of $\phi$  when time interpolation is required to estimate the value of $\phi$
9  at the time $n \Delta t$.  at the time $n \Delta t$.
10    
11  \section{Time Integration}  \section{Time integration}
12    
13  The discretization in time of the model equations (cf section I )  The discretization in time of the model equations (cf section I )
14  does not depend of the discretization in space of each  does not depend of the discretization in space of each
# Line 30  b' & = & b'(\theta,S,r) Line 30  b' & = & b'(\theta,S,r)
30  \label{eq-r-split-hyd}  \label{eq-r-split-hyd}
31  \\  \\
32  \partial_t \vec{\bf v}  \partial_t \vec{\bf v}
33  + {\bf \nabla}_r B_o \eta  + {\bf \nabla}_h b_s \eta
34  + \epsilon_{nh} {\bf \nabla}_r \phi'_{nh}  + \epsilon_{nh} {\bf \nabla}_h \phi'_{nh}
35  & = & \vec{\bf G}_{\vec{\bf v}}  & = & \vec{\bf G}_{\vec{\bf v}}
36  - {\bf \nabla}_r \phi'_{hyd}  - {\bf \nabla}_h \phi'_{hyd}
37  \label{eq-r-split-hmom}  \label{eq-r-split-hmom}
38  \\  \\
39  \epsilon_{nh} \frac {\partial{\dot{r}}}{\partial{t}}  \epsilon_{nh} \frac {\partial{\dot{r}}}{\partial{t}}
# Line 41  b' & = & b'(\theta,S,r) Line 41  b' & = & b'(\theta,S,r)
41  & = & \epsilon_{nh} G_{\dot{r}}  & = & \epsilon_{nh} G_{\dot{r}}
42  \label{eq-r-split-rdot}  \label{eq-r-split-rdot}
43  \\  \\
44  {\bf \nabla}_r \cdot \vec{\bf v} + \partial_r \dot{r}  {\bf \nabla}_h \cdot \vec{\bf v} + \partial_r \dot{r}
45  & = & 0  & = & 0
46  \label{eq-r-cont}  \label{eq-r-cont}
47  \end{eqnarray}  \end{eqnarray}
48  where  where
49  \begin{eqnarray*}  \begin{eqnarray*}
50  G_\theta & = &  G_\theta & = &
51  - \vec{\bf v} \cdot {\bf \nabla}_r \theta + {\cal Q}_\theta  - \vec{\bf v} \cdot {\bf \nabla} \theta + {\cal Q}_\theta
52  \\  \\
53  G_S & = &  G_S & = &
54  - \vec{\bf v} \cdot {\bf \nabla}_r S + {\cal Q}_S  - \vec{\bf v} \cdot {\bf \nabla} S + {\cal Q}_S
55  \\  \\
56  \vec{\bf G}_{\vec{\bf v}}  \vec{\bf G}_{\vec{\bf v}}
57  & = &  & = &
58  - \vec{\bf v} \cdot {\bf \nabla}_r \vec{\bf v}  - \vec{\bf v} \cdot {\bf \nabla} \vec{\bf v}
59  - f \hat{\bf k} \wedge \vec{\bf v}  - f \hat{\bf k} \wedge \vec{\bf v}
60  + \vec{\cal F}_{\vec{\bf v}}  + \vec{\cal F}_{\vec{\bf v}}
61  \\  \\
62  G_{\dot{r}}  G_{\dot{r}}
63  & = &  & = &
64  - \vec{\bf v} \cdot {\bf \nabla}_r \dot{r}  - \vec{\bf v} \cdot {\bf \nabla} \dot{r}
65  + {\cal F}_{\dot{r}}  + {\cal F}_{\dot{r}}
66  \end{eqnarray*}  \end{eqnarray*}
67  The exact form of all the "{\it G}"s terms is described in the next  The exact form of all the "{\it G}"s terms is described in the next
# Line 70  all the RHS terms except the pressure / Line 70  all the RHS terms except the pressure /
70    
71  The switch $\epsilon_{nh}$ allows to activate the non hydrostatic  The switch $\epsilon_{nh}$ allows to activate the non hydrostatic
72  mode ($\epsilon_{nh}=1$) for the ocean model. Otherwise,  mode ($\epsilon_{nh}=1$) for the ocean model. Otherwise,
73  in the hydrostatic limit $\epsilon_{nh} = 0$ and the 3rd equation vanishes.  in the hydrostatic limit $\epsilon_{nh} = 0$
74    and equation \ref{eq-r-split-rdot} vanishes.
75    
76  The equation for $\eta$ is obtained by integrating the  The equation for $\eta$ is obtained by integrating the
77  continuity equation over the entire depth of the fluid,  continuity equation over the entire depth of the fluid,
# Line 79  from $R_{min}(x,y)$ up to $R_o(x,y)$ Line 80  from $R_{min}(x,y)$ up to $R_o(x,y)$
80  \begin{eqnarray}  \begin{eqnarray}
81  \epsilon_{fs} \partial_t \eta =  \epsilon_{fs} \partial_t \eta =
82  \left. \dot{r} \right|_{r=r_{surf}} + \epsilon_{fw} (P-E) =  \left. \dot{r} \right|_{r=r_{surf}} + \epsilon_{fw} (P-E) =
83  - {\bf \nabla}_r \cdot \int_{R_{min}}^{R_o} \vec{\bf v} dr  - {\bf \nabla} \cdot \int_{R_{min}}^{R_o} \vec{\bf v} dr
84  + \epsilon_{fw} (P-E)  + \epsilon_{fw} (P-E)
85  \label{eq-cont-2D}  \label{eq-cont-2D}
86  \end{eqnarray}  \end{eqnarray}
# Line 104  $\phi'_{hyd}(r=R_o) = 0$: Line 105  $\phi'_{hyd}(r=R_o) = 0$:
105  \phi'_{hyd}(x,y,r') = \int_{r'}^{R_o} b' dr  \phi'_{hyd}(x,y,r') = \int_{r'}^{R_o} b' dr
106  \end{eqnarray*}  \end{eqnarray*}
107    
108  \subsection{standard synchronous time stepping}  \subsection{General method}
109    
110    The general algorithm consist in  a "predictor step" that computes
111    the forward tendencies ("G" terms") and all
112    the "first guess" values star notation):
113    $\vec{\bf v}^*, \theta^*, S^*$ (and $\dot{r}^*$
114    in non-hydrostatic mode). This is done in the routine {\it DYNAMICS}.
115    
116    Then the implicit terms that appear here on the left hand side (LHS),
117    are solved as follows:
118    Since implicit vertical diffusion and viscosity terms
119    are independent from the barotropic flow adjustment,
120    they are computed first, solving a 3 diagonal Nr x Nr linear system,
121    and incorporated at the end of the {\it DYNAMICS} routines.
122    Then the surface pressure and non hydrostatic pressure
123    are evaluated ({\it SOLVE\_FOR\_PRESSURE});
124    
125    Finally, within a "corrector step',
126    (routine {\it THE\_CORRECTION\_STEP})
127    the new values of $u,v,w,\theta,S$
128    are derived according to the above equations
129    (see details in II.1.3).
130    
131    At this point, the regular time step is over, but  
132    the correction step contains also other optional
133    adjustments such as convective adjustment algorithm, or filters
134    (zonal FFT filter, shapiro filter)
135    that applied on both momentum and tracer fields.
136    just before setting the $n+1$ new time step value.
137    
138    Since the pressure solver precision is of the order of
139    the "target residual" that could be lower than the
140    the computer truncation error, and also because some filters
141    might alter the divergence part of the flow field,
142    a final evaluation of the surface r anomaly $\eta^{n+1}$
143    is performed, according to \ref{eq-rtd-eta} ({\it CALC\_EXACT\_ETA}).
144    This ensures a perfect volume conservation.
145    Note that there is no need for an equivalent Non-hydrostatic
146    "exact conservation" step, since W is already computed after
147    the filters applied.
148    
149    optionnal forcing terms (package):\\
150    Regarding optional forcing terms (usually part of a "package"),
151    that a account for a specific source or sink term (e.g.: condensation
152    as a sink of water vapor Q), they are generally incorporated
153    in the main algorithm as follows;
154    At the the beginning of the time step,
155    the additionnal tendencies are computed
156    as function of the present state (time step $n$) and external forcing ;
157    Then within the main part of model,
158    only those new tendencies are added to the model variables.
159    
160    [more details needed]\\
161    The atmospheric physics follows this general scheme.
162    
163    \subsection{Standard synchronous time stepping}
164    
165  In the standard formulation, the surface pressure is  In the standard formulation, the surface pressure is
166  evaluated at time step n+1 (implicit method).  evaluated at time step n+1 (implicit method).
# Line 124  S^{n+1} & = & S^* Line 180  S^{n+1} & = & S^*
180  \label{eq-rtd-hyd}  \label{eq-rtd-hyd}
181  \\  \\
182  \vec{\bf v} ^{n+1}  \vec{\bf v} ^{n+1}
183  + \Delta t {\bf \nabla}_r B_o {\eta}^{n+1}  + \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}
184  + \epsilon_{nh} \Delta t {\bf \nabla}_r {\phi'_{nh}}^{n+1}  + \epsilon_{nh} \Delta t {\bf \nabla} {\phi'_{nh}}^{n+1}
185  - \partial_r A_v \partial_r \vec{\bf v}^{n+1}  - \partial_r A_v \partial_r \vec{\bf v}^{n+1}
186  & = &  & = &
187  \vec{\bf v}^*  \vec{\bf v}^*
188  \label{eq-rtd-hmom}  \label{eq-rtd-hmom}
189  \\  \\
190  \epsilon_{fs} {\eta}^{n+1} + \Delta t  \epsilon_{fs} {\eta}^{n+1} + \Delta t
191  {\bf \nabla}_r \cdot \int_{R_{min}}^{R_o} \vec{\bf v}^{n+1} dr  {\bf \nabla}_h \cdot \int_{R_{min}}^{R_o} \vec{\bf v}^{n+1} dr
192  & = &  & = &
193      \epsilon_{fs} {\eta}^{n} + \epsilon_{fw} \Delta_t (P-E)^{n}      \epsilon_{fs} {\eta}^{n} + \epsilon_{fw} \Delta_t (P-E)^{n}
194  \nonumber  \nonumber
# Line 146  S^{n+1} & = & S^* Line 202  S^{n+1} & = & S^*
202  & = & \epsilon_{nh} \dot{r}^*  & = & \epsilon_{nh} \dot{r}^*
203  \label{eq-rtd-rdot}  \label{eq-rtd-rdot}
204  \\  \\
205  {\bf \nabla}_r \cdot \vec{\bf v}^{n+1} + \partial_r \dot{r}^{n+1}  {\bf \nabla}_h \cdot \vec{\bf v}^{n+1} + \partial_r \dot{r}^{n+1}
206  & = & 0  & = & 0
207  \label{eq-rtd-cont}  \label{eq-rtd-cont}
208  \end{eqnarray}  \end{eqnarray}
# Line 160  S ^{n} + \Delta t G_{S} ^{(n+1/2)} Line 216  S ^{n} + \Delta t G_{S} ^{(n+1/2)}
216  \\  \\
217  \vec{\bf v}^* & = &  \vec{\bf v}^* & = &
218  \vec{\bf v}^{n} + \Delta t \vec{\bf G}_{\vec{\bf v}} ^{(n+1/2)}  \vec{\bf v}^{n} + \Delta t \vec{\bf G}_{\vec{\bf v}} ^{(n+1/2)}
219  + \Delta t  {\bf \nabla}_r {\phi'_{hyd}}^{(n+1/2)}  + \Delta t  {\bf \nabla}_h {\phi'_{hyd}}^{(n+1/2)}
220  \\  \\
221  \dot{r}^* & = &  \dot{r}^* & = &
222  \dot{r} ^{n} + \Delta t G_{\dot{r}} ^{(n+1/2)}  \dot{r} ^{n} + \Delta t G_{\dot{r}} ^{(n+1/2)}
# Line 184  In the standard non-stagger formulation, Line 240  In the standard non-stagger formulation,
240  the Adams-Bashforth time stepping is also applied to the  the Adams-Bashforth time stepping is also applied to the
241  hydrostatic (pressure / geo-) potential term $\nabla_h \Phi'_{hyd}$.  hydrostatic (pressure / geo-) potential term $\nabla_h \Phi'_{hyd}$.
242  Note that presently, this term is in fact incorporated to the  Note that presently, this term is in fact incorporated to the
243  $\vec{\bf G}_{\vec{\bf v}}$ arrays ({\it gU,gV}).  $\vec{\bf G}_{\vec{\bf v}}$ arrays ({\bf gU,gV}).
   
 \subsection{general method}  
   
 The general algorithm consist in  a "predictor step" that computes  
 the forward tendencies ("G" terms") and all  
 the "first guess" values star notation):  
 $\vec{\bf v}^*, \theta^*, S^*$ (and $\dot{r}^*$  
 in non-hydrostatic mode). This is done in the routine {\it DYNAMICS}.  
   
 Then the implicit terms that appear here on the left hand side (LHS),  
 are solved as follows:  
 Since implicit vertical diffusion and viscosity terms  
 are independent from the barotropic flow adjustment,  
 they are computed first, solving a 3 diagonal Nr x Nr linear system,  
 and incorporated at the end of the {\it DYNAMICS} routines.  
 Then the surface pressure and non hydrostatic pressure  
 are evaluated ({\it SOLVE\_FOR\_PRESSURE});  
   
 Finally, within a "corrector step',  
 (routine {\it THE\_CORRECTION\_STEP})  
 the new values of $u,v,w,\theta,S$  
 are derived according to the above equations  
 (see details in II.1.3).  
   
 At this point, the regular time step is over, but    
 the correction step contains also other optional  
 adjustments such as convective adjustment algorithm, or filters  
 (zonal FFT filter, shapiro filter)  
 that applied on both momentum and tracer fields.  
 just before setting the $n+1$ new time step value.  
   
 Since the pressure solver precision is of the order of  
 the "target residual" that could be lower than the  
 the computer truncation error, and also because some filters  
 might alter the divergence part of the flow field,  
 a final evaluation of the surface r anomaly $\eta^{n+1}$  
 is performed, according to \ref{eq-rtd-eta} ({\it CALC\_EXACT\_ETA}).  
 This ensures a perfect volume conservation.  
 Note that there is no need for an equivalent Non-hydrostatic  
 "exact conservation" step, since W is already computed after  
 the filters applied.  
   
 optionnal forcing terms (package):\\  
 Regarding optional forcing terms (usually part of a "package"),  
 that a account for a specific source or sink term (e.g.: condensation  
 as a sink of water vapor Q), they are generally incorporated  
 in the main algorithm as follows;  
 At the the beginning of the time step,  
 the additionnal tendencies are computed  
 as function of the present state (time step $n$) and external forcing ;  
 Then within the main part of model,  
 only those new tendencies are added to the model variables.  
   
 [mode details needed]  
 The atmospheric physics follows this general scheme.  
244    
245  \subsection{stagger baroclinic time stepping}  \subsection{Stagger baroclinic time stepping}
246    
247  An alternative is to evaluate $\phi'_{hyd}$ with the  An alternative is to evaluate $\phi'_{hyd}$ with the
248  new tracer fields, and step forward the momentum after.  new tracer fields, and step forward the momentum after.
249  This option is known as stagger baroclinic time stepping,  This option is known as stagger baroclinic time stepping,
250  since tracer and momentum are step forward in time one after the other.  since tracer and momentum are step forward in time one after the other.
251  It can be activated turning on a running flag parameter  It can be activated turning on a running flag parameter
252  {\it staggerTimeStep} in file "{\it data}").  {\bf staggerTimeStep} in file "{\it data}").
253    
254  The main advantage of this time stepping compared to a synchronous one,  The main advantage of this time stepping compared to a synchronous one,
255  is a better stability, specially regarding internal gravity waves,  is a better stability, specially regarding internal gravity waves,
# Line 288  And Line 289  And
289  %\label{eq-rtd-hyd}  %\label{eq-rtd-hyd}
290  \\  \\
291  \vec{\bf v} ^{n+1}  \vec{\bf v} ^{n+1}
292  + \Delta t {\bf \nabla}_r B_o {\eta}^{n+1}  + \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}
293  + \epsilon_{nh} \Delta t {\bf \nabla}_r {\phi'_{nh}}^{n+1}  + \epsilon_{nh} \Delta t {\bf \nabla}_h {\phi'_{nh}}^{n+1}
294  - \partial_r A_v \partial_r \vec{\bf v}^{n+1}  - \partial_r A_v \partial_r \vec{\bf v}^{n+1}
295  & = &  & = &
296  \vec{\bf v}^*  \vec{\bf v}^*
297  %\label{eq-rtd-hmom}  %\label{eq-rtd-hmom}
298  \\  \\
299  \epsilon_{fs} {\eta}^{n+1} + \Delta t  \epsilon_{fs} {\eta}^{n+1} + \Delta t
300  {\bf \nabla}_r \cdot \int_{R_{min}}^{R_o} \vec{\bf v}^{n+1} dr  {\bf \nabla}_h \cdot \int_{R_{min}}^{R_o} \vec{\bf v}^{n+1} dr
301  & = &  & = &
302  \epsilon_{fs} {\eta}^{n} + \epsilon_{fw} \Delta_t (P-E)^{n}  \epsilon_{fs} {\eta}^{n} + \epsilon_{fw} \Delta_t (P-E)^{n}
303  \\  \\
# Line 306  And Line 307  And
307  & = & \epsilon_{nh} \dot{r}^*  & = & \epsilon_{nh} \dot{r}^*
308  %\label{eq-rtd-rdot}  %\label{eq-rtd-rdot}
309  \\  \\
310  {\bf \nabla}_r \cdot \vec{\bf v}^{n+1} + \partial_r \dot{r}^{n+1}  {\bf \nabla}_h \cdot \vec{\bf v}^{n+1} + \partial_r \dot{r}^{n+1}
311  & = & 0  & = & 0
312  %\label{eq-rtd-cont}  %\label{eq-rtd-cont}
313  \end{eqnarray*}  \end{eqnarray*}
# Line 314  with Line 315  with
315  \begin{eqnarray*}  \begin{eqnarray*}
316  \vec{\bf v}^* & = &  \vec{\bf v}^* & = &
317  \vec{\bf v} ^{n} + \Delta t \vec{\bf G}_{\vec{\bf v}} ^{(n+1/2)}  \vec{\bf v} ^{n} + \Delta t \vec{\bf G}_{\vec{\bf v}} ^{(n+1/2)}
318  + \Delta t  {\bf \nabla}_r {\phi'_{hyd}}^{n+1/2}  + \Delta t  {\bf \nabla}_h {\phi'_{hyd}}^{n+1/2}
319  \\  \\
320  \dot{r}^* & = &  \dot{r}^* & = &
321  \dot{r} ^{n} + \Delta t G_{\dot{r}} ^{(n+1/2)}  \dot{r} ^{n} + \Delta t G_{\dot{r}} ^{(n+1/2)}
# Line 322  with Line 323  with
323    
324  %---------------------------------------------------------------------  %---------------------------------------------------------------------
325    
326  \subsection{surface pressure}  \subsection{Surface pressure}
327    
328  Substituting \ref{eq-rtd-hmom} into \ref{eq-rtd-cont}, assuming  Substituting \ref{eq-rtd-hmom} into \ref{eq-rtd-cont}, assuming
329  $\epsilon_{nh} = 0$ yields a Helmholtz equation for ${\eta}^{n+1}$:  $\epsilon_{nh} = 0$ yields a Helmholtz equation for ${\eta}^{n+1}$:
330  \begin{eqnarray}  \begin{eqnarray}
331  \epsilon_{fs} {\eta}^{n+1} -  \epsilon_{fs} {\eta}^{n+1} -
332  {\bf \nabla}_r \cdot \Delta t^2 (R_o-R_{min})  {\bf \nabla}_h \cdot \Delta t^2 (R_o-R_{min})
333  {\bf \nabla}_r B_o {\eta}^{n+1}  {\bf \nabla}_h b_s {\eta}^{n+1}
334  = {\eta}^*  = {\eta}^*
335  \label{solve_2d}  \label{solve_2d}
336  \end{eqnarray}  \end{eqnarray}
337  where  where
338  \begin{eqnarray}  \begin{eqnarray}
339  {\eta}^* = \epsilon_{fs} \: {\eta}^{n} -  {\eta}^* = \epsilon_{fs} \: {\eta}^{n} -
340  \Delta t {\bf \nabla}_r \cdot \int_{R_{min}}^{R_o} \vec{\bf v}^* dr  \Delta t {\bf \nabla}_h \cdot \int_{R_{min}}^{R_o} \vec{\bf v}^* dr
341  \: + \: \epsilon_{fw} \Delta_t (P-E)^{n}  \: + \: \epsilon_{fw} \Delta_t (P-E)^{n}
342  \label{solve_2d_rhs}  \label{solve_2d_rhs}
343  \end{eqnarray}  \end{eqnarray}
# Line 346  would yield $\vec{\bf v}^{n+1}$ if the m Line 347  would yield $\vec{\bf v}^{n+1}$ if the m
347  ($\epsilon_{nh}=0$):  ($\epsilon_{nh}=0$):
348  $$  $$
349  \vec{\bf v}^{n+1} = \vec{\bf v}^{*}  \vec{\bf v}^{n+1} = \vec{\bf v}^{*}
350  - \Delta t {\bf \nabla}_r B_o {\eta}^{n+1}  - \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}
351  $$  $$
352    
353  This is known as the correction step. However, when the model is  This is known as the correction step. However, when the model is
# Line 355  additional equation for $\phi'_{nh}$. Th Line 356  additional equation for $\phi'_{nh}$. Th
356  substituting \ref{eq-rtd-hmom} and \ref{eq-rtd-rdot} into  substituting \ref{eq-rtd-hmom} and \ref{eq-rtd-rdot} into
357  \ref{eq-rtd-cont}:  \ref{eq-rtd-cont}:
358  \begin{equation}  \begin{equation}
359  \left[ {\bf \nabla}_r^2 + \partial_{rr} \right] {\phi'_{nh}}^{n+1}  \left[ {\bf \nabla}_h^2 + \partial_{rr} \right] {\phi'_{nh}}^{n+1}
360  = \frac{1}{\Delta t} \left(  = \frac{1}{\Delta t} \left(
361  {\bf \nabla}_r \cdot \vec{\bf v}^{**} + \partial_r \dot{r}^* \right)  {\bf \nabla}_h \cdot \vec{\bf v}^{**} + \partial_r \dot{r}^* \right)
362  \end{equation}  \end{equation}
363  where  where
364  \begin{displaymath}  \begin{displaymath}
365  \vec{\bf v}^{**} = \vec{\bf v}^* - \Delta t {\bf \nabla}_r B_o {\eta}^{n+1}  \vec{\bf v}^{**} = \vec{\bf v}^* - \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}
366  \end{displaymath}  \end{displaymath}
367  Note that $\eta^{n+1}$ is also used to update the second RHS term  Note that $\eta^{n+1}$ is also used to update the second RHS term
368  $\partial_r \dot{r}^* $ since  $\partial_r \dot{r}^* $ since
# Line 371  is evaluated as $(\eta^{n+1} - \eta^n) / Line 372  is evaluated as $(\eta^{n+1} - \eta^n) /
372  Finally, the horizontal velocities at the new time level are found by:  Finally, the horizontal velocities at the new time level are found by:
373  \begin{equation}  \begin{equation}
374  \vec{\bf v}^{n+1} = \vec{\bf v}^{**}  \vec{\bf v}^{n+1} = \vec{\bf v}^{**}
375  - \epsilon_{nh} \Delta t {\bf \nabla}_r {\phi'_{nh}}^{n+1}  - \epsilon_{nh} \Delta t {\bf \nabla}_h {\phi'_{nh}}^{n+1}
376  \end{equation}  \end{equation}
377  and the vertical velocity is found by integrating the continuity  and the vertical velocity is found by integrating the continuity
378  equation vertically.  equation vertically.
# Line 419  the main data file "{\it data}" and are Line 420  the main data file "{\it data}" and are
420  Equations \ref{eq-rtd-hmom} and \ref{eq-rtd-eta} are modified as follows:  Equations \ref{eq-rtd-hmom} and \ref{eq-rtd-eta} are modified as follows:
421  $$  $$
422  \frac{ \vec{\bf v}^{n+1} }{ \Delta t }  \frac{ \vec{\bf v}^{n+1} }{ \Delta t }
423  + {\bf \nabla}_r B_o [ \beta {\eta}^{n+1} + (1-\beta) {\eta}^{n} ]  + {\bf \nabla}_h b_s [ \beta {\eta}^{n+1} + (1-\beta) {\eta}^{n} ]
424  + \epsilon_{nh} {\bf \nabla}_r {\phi'_{nh}}^{n+1}  + \epsilon_{nh} {\bf \nabla}_h {\phi'_{nh}}^{n+1}
425   = \frac{ \vec{\bf v}^* }{ \Delta t }   = \frac{ \vec{\bf v}^* }{ \Delta t }
426  $$  $$
427  $$  $$
428  \epsilon_{fs} \frac{ {\eta}^{n+1} - {\eta}^{n} }{ \Delta t}  \epsilon_{fs} \frac{ {\eta}^{n+1} - {\eta}^{n} }{ \Delta t}
429  + {\bf \nabla}_r \cdot \int_{R_{min}}^{R_o}  + {\bf \nabla}_h \cdot \int_{R_{min}}^{R_o}
430  [ \gamma \vec{\bf v}^{n+1} + (1-\gamma) \vec{\bf v}^{n}] dr  [ \gamma \vec{\bf v}^{n+1} + (1-\gamma) \vec{\bf v}^{n}] dr
431  = \epsilon_{fw} (P-E)  = \epsilon_{fw} (P-E)
432  $$  $$
# Line 433  where: Line 434  where:
434  \begin{eqnarray*}  \begin{eqnarray*}
435  \vec{\bf v}^* & = &  \vec{\bf v}^* & = &
436  \vec{\bf v} ^{n} + \Delta t \vec{\bf G}_{\vec{\bf v}} ^{(n+1/2)}  \vec{\bf v} ^{n} + \Delta t \vec{\bf G}_{\vec{\bf v}} ^{(n+1/2)}
437  + (\beta-1) \Delta t {\bf \nabla}_r B_o {\eta}^{n}  + (\beta-1) \Delta t {\bf \nabla}_h b_s {\eta}^{n}
438  + \Delta t {\bf \nabla}_r {\phi'_{hyd}}^{(n+1/2)}  + \Delta t {\bf \nabla}_h {\phi'_{hyd}}^{(n+1/2)}
439  \\  \\
440  {\eta}^* & = &  {\eta}^* & = &
441  \epsilon_{fs} {\eta}^{n} + \epsilon_{fw} \Delta t (P-E)  \epsilon_{fs} {\eta}^{n} + \epsilon_{fw} \Delta t (P-E)
442  - \Delta t {\bf \nabla}_r \cdot \int_{R_{min}}^{R_o}  - \Delta t {\bf \nabla}_h \cdot \int_{R_{min}}^{R_o}
443  [ \gamma \vec{\bf v}^* + (1-\gamma) \vec{\bf v}^{n}] dr  [ \gamma \vec{\bf v}^* + (1-\gamma) \vec{\bf v}^{n}] dr
444  \end{eqnarray*}  \end{eqnarray*}
445  \\  \\
# Line 446  In the hydrostatic case ($\epsilon_{nh}= Line 447  In the hydrostatic case ($\epsilon_{nh}=
447  this allow to find ${\eta}^{n+1}$, according to:  this allow to find ${\eta}^{n+1}$, according to:
448  $$  $$
449  \epsilon_{fs} {\eta}^{n+1} -  \epsilon_{fs} {\eta}^{n+1} -
450  {\bf \nabla}_r \cdot \beta\gamma \Delta t^2 B_o (R_o - R_{min})  {\bf \nabla}_h \cdot \beta\gamma \Delta t^2 b_s (R_o - R_{min})
451  {\bf \nabla}_r {\eta}^{n+1}  {\bf \nabla}_h {\eta}^{n+1}
452  = {\eta}^*  = {\eta}^*
453  $$  $$
454  and then to compute (correction step):  and then to compute (correction step):
455  $$  $$
456  \vec{\bf v}^{n+1} = \vec{\bf v}^{*}  \vec{\bf v}^{n+1} = \vec{\bf v}^{*}
457  - \beta \Delta t {\bf \nabla}_r B_o {\eta}^{n+1}  - \beta \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}
458  $$  $$
459    
460  The non-hydrostatic part is solved as described previously.  The non-hydrostatic part is solved as described previously.

Legend:
Removed from v.1.2  
changed lines
  Added in v.1.3

  ViewVC Help
Powered by ViewVC 1.1.22