/[MITgcm]/manual/s_algorithm/text/time_stepping.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/time_stepping.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.13 by adcroft, Tue Nov 13 20:51:36 2001 UTC revision 1.14 by adcroft, Wed Nov 14 21:07:13 2001 UTC
# Line 558  The only difficulty with this approach i Line 558  The only difficulty with this approach i
558  connecting $u,v^n$ with $G_\theta^{n-1/2}$. The flow used to advect  connecting $u,v^n$ with $G_\theta^{n-1/2}$. The flow used to advect
559  tracers around is not naturally located in time. This could be avoided  tracers around is not naturally located in time. This could be avoided
560  by applying the Adams-Bashforth extrapolation to the tracer field  by applying the Adams-Bashforth extrapolation to the tracer field
561  itself and advection that around but this is not yet available. We're  itself and advecting that around but this approach is not yet
562  not aware of any detrimental effect of this feature. The difficulty  available. We're not aware of any detrimental effect of this
563  lies mainly in interpretation of what time-level variables and terms  feature. The difficulty lies mainly in interpretation of what
564  correspond to.  time-level variables and terms correspond to.
565    
566    
567  \section{Non-hydrostatic formulation}  \section{Non-hydrostatic formulation}
568  \label{sect:non-hydrostatic}  \label{sect:non-hydrostatic}
569    
570  [to be written...]  The non-hydrostatic formulation re-introduces the full vertical
571    momentum equation and requires the solution of a 3-D elliptic
572    equations for non-hydrostatic pressure perturbation. We still
573    intergrate vertically for the hydrostatic pressure and solve a 2-D
574    elliptic equation for the surface pressure/elevation for this reduces
575    the amount of work needed to solve for the non-hydrostatic pressure.
576    
577  Equation for $w^{n+1}$ will be here as will 3-D elliptic equations.  The momentum equations are discretized in time as follows:
578  \label{eq:discrete-time-w}  \begin{eqnarray}
579    \frac{1}{\Delta t} u^{n+1} + g \partial_x \eta^{n+1} + \partial_x \phi_{nh}^{n+1}
580    & = & \frac{1}{\Delta t} u^{n} + G_u^{(n+1/2)} \label{eq:discrete-time-u-nh} \\
581    \frac{1}{\Delta t} v^{n+1} + g \partial_y \eta^{n+1} + \partial_y \phi_{nh}^{n+1}
582    & = & \frac{1}{\Delta t} v^{n} + G_v^{(n+1/2)} \label{eq:discrete-time-v-nh} \\
583    \frac{1}{\Delta t} w^{n+1} + \partial_r \phi_{nh}^{n+1}
584    & = & \frac{1}{\Delta t} w^{n} + G_w^{(n+1/2)} \label{eq:discrete-time-w-nh} \\
585    \end{eqnarray}
586    which must satisfy the discrete-in-time depth integrated continuity,
587    equation~\ref{eq:discrete-time-backward-free-surface} and the local continuity equation
588    \begin{equation}
589    \partial_x u^{n+1} + \partial_y v^{n+1} + \partial_r w^{n+1} = 0
590    \label{eq:non-divergence-nh}
591    \end{equation}
592    As before, the explicit predictions for momentum are consolidated as:
593    \begin{eqnarray*}
594    u^* & = & u^n + \Delta t G_u^{(n+1/2)} \\
595    v^* & = & v^n + \Delta t G_v^{(n+1/2)} \\
596    w^* & = & w^n + \Delta t G_w^{(n+1/2)}
597    \end{eqnarray*}
598    but this time we introduce an intermediate step by splitting the
599    tendancy of the flow as follows:
600    \begin{eqnarray}
601    u^{n+1} = u^{**} - \Delta t \partial_x \phi_{nh}^{n+1}
602    & &
603    u^{**} = u^{*} - \Delta t g \partial_x \eta^{n+1} \\
604    v^{n+1} = v^{**} - \Delta t \partial_y \phi_{nh}^{n+1}
605    & &
606    v^{**} = v^{*} - \Delta t g \partial_y \eta^{n+1}
607    \end{eqnarray}
608    Substituting into the depth integrated continuity
609    (equation~\ref{eq:discrete-time-backward-free-surface}) gives
610    \begin{equation}
611    \partial_x H \partial_x \left( g \eta^{n+1} + \widehat{\phi}_{nh}^{n+1} \right)
612    +
613    \partial_y H \partial_y \left( g \eta^{n+1} + \widehat{\phi}_{nh}^{n+1} \right)
614     - \frac{\epsilon_{fs}\eta^*}{\Delta t^2}
615    = - \frac{\eta^*}{\Delta t^2}
616    \end{equation}
617    which is approximated by equation
618    \ref{eq:elliptic-backward-free-surface} on the basis that i)
619    $\phi_{nh}^{n+1}$ is not yet known and ii) $\nabla \widehat{\phi}_{nh}
620    << g \nabla \eta$. If \ref{eq:elliptic-backward-free-surface} is
621    solved accurately then the implication is that $\widehat{\phi}_{nh}
622    \approx 0$ so that thet non-hydrostatic pressure field does not drive
623    barotropic motion.
624    
625    The flow must satisfy non-divergence
626    (equation~\ref{eq:non-divergence-nh}) locally, as well as depth
627    integrated, and this constraint is used to form a 3-D elliptic
628    equations for $\phi_{nh}^{n+1}$:
629    \begin{equation}
630    \partial_{xx} \phi_{nh}^{n+1} + \partial_{yy} \phi_{nh}^{n+1} +
631    \partial_{rr} \phi_{nh}^{n+1} =
632    \partial_x u^{**} + \partial_y v^{**} + \partial_r w^{*}
633    \end{equation}
634    
635    The entire algorithm can be summarized as the sequential solution of
636    the following equations:
637    \begin{eqnarray}
638    u^{*} & = & u^{n} + \Delta t G_u^{(n+1/2)} \label{eq:ustar-nh} \\
639    v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-nh} \\
640    w^{*} & = & w^{n} + \Delta t G_w^{(n+1/2)} \label{eq:wstar-nh} \\
641    \eta^* & = & \epsilon_{fs} \left( \eta^{n} +P-E+R \right)- \Delta t
642      \partial_x H \widehat{u^{*}}
643    + \partial_y H \widehat{v^{*}}
644    \\
645      \partial_x g H \partial_x \eta^{n+1}
646    + \partial_y g H \partial_y \eta^{n+1}
647    - \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2}
648    & = &
649    - \frac{\eta^*}{\Delta t^2}
650    \label{eq:elliptic-nh}
651    \\
652    u^{**} & = & u^{*} - \Delta t g \partial_x \eta^{n+1} \label{eq:unx-nh}\\
653    v^{**} & = & v^{*} - \Delta t g \partial_y \eta^{n+1} \label{eq:vnx-nh}\\
654    \partial_{xx} \phi_{nh}^{n+1} + \partial_{yy} \phi_{nh}^{n+1} +
655    \partial_{rr} \phi_{nh}^{n+1} & = &
656    \partial_x u^{**} + \partial_y v^{**} + \partial_r w^{*} \\
657    u^{n+1} & = & u^{**} - \Delta t \partial_x \phi_{nh}^{n+1} \label{eq:un+1-nh}\\
658    v^{n+1} & = & v^{**} - \Delta t \partial_y \phi_{nh}^{n+1} \label{eq:vn+1-nh}\\
659    \partial_r w^{n+1} & = & - \partial_x u^{n+1} - \partial_y v^{n+1}
660    \end{eqnarray}
661    where the last equation is solved by vertically integrating for
662    $w^{n+1}$.
663    
664    
665    
# Line 623  $$ Line 712  $$
712  This is known as the correction step. However, when the model is  This is known as the correction step. However, when the model is
713  non-hydrostatic ($\epsilon_{nh}=1$) we need an additional step and an  non-hydrostatic ($\epsilon_{nh}=1$) we need an additional step and an
714  additional equation for $\phi'_{nh}$. This is obtained by substituting  additional equation for $\phi'_{nh}$. This is obtained by substituting
715  \ref{eq:discrete-time-u}, \ref{eq:discrete-time-v} and \ref{eq:discrete-time-w}  \ref{eq:discrete-time-u-nh}, \ref{eq:discrete-time-v-nh} and \ref{eq:discrete-time-w-nh}
716  into continuity:  into continuity:
717  \begin{equation}  \begin{equation}
718  \left[ {\bf \nabla}_h^2 + \partial_{rr} \right] {\phi'_{nh}}^{n+1}  \left[ {\bf \nabla}_h^2 + \partial_{rr} \right] {\phi'_{nh}}^{n+1}

Legend:
Removed from v.1.13  
changed lines
  Added in v.1.14

  ViewVC Help
Powered by ViewVC 1.1.22