/[MITgcm]/manual/s_algorithm/text/time_stepping.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/time_stepping.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.7 by adcroft, Fri Sep 28 14:09:56 2001 UTC revision 1.26 by jmc, Thu Jun 29 01:45:32 2006 UTC
# Line 1  Line 1 
1  % $Header$  % $Header$
2  % $Name$  % $Name$
3    
4  The convention used in this section is as follows:  This chapter lays out the numerical schemes that are
5  Time is ``discretized'' using a time step $\Delta t$    employed in the core MITgcm algorithm. Whenever possible
6  and $\Phi^n$ refers to the variable $\Phi$  links are made to actual program code in the MITgcm implementation.
7  at time $t = n \Delta t$ . We use the notation $\Phi^{(n)}$  The chapter begins with a discussion of the temporal discretization
8  when time interpolation is required to estimate the value of $\phi$  used in MITgcm. This discussion is followed by sections that
9  at the time $n \Delta t$.  describe the spatial discretization. The schemes employed for momentum
10    terms are described first, afterwards the schemes that apply to
11  \section{Time integration}  passive and dynamically active tracers are described.
12    
13  The discretization in time of the model equations (cf section I )  \input{part2/notation}
14  does not depend of the discretization in space of each  
15  term and so  this section can be read independently.  \section{Time-stepping}
16    \begin{rawhtml}
17  The continuous form of the model equations is:  <!-- CMIREDIR:time-stepping: -->
18    \end{rawhtml}
19  \begin{eqnarray}  
20  \partial_t \theta & = & G_\theta  The equations of motion integrated by the model involve four
21  \label{eq-tCsC-theta}  prognostic equations for flow, $u$ and $v$, temperature, $\theta$, and
22  \\  salt/moisture, $S$, and three diagnostic equations for vertical flow,
23  \partial_t S & = & G_s  $w$, density/buoyancy, $\rho$/$b$, and pressure/geo-potential,
24  \label{eq-tCsC-salt}  $\phi_{hyd}$. In addition, the surface pressure or height may by
25  \\  described by either a prognostic or diagnostic equation and if
26  b' & = & b'(\theta,S,r)  non-hydrostatics terms are included then a diagnostic equation for
27  \\  non-hydrostatic pressure is also solved. The combination of prognostic
28  \partial_r \phi'_{hyd} & = & -b'  and diagnostic equations requires a model algorithm that can march
29  \label{eq-tCsC-hyd}  forward prognostic variables while satisfying constraints imposed by
30  \\  diagnostic equations.
31  \partial_t \vec{\bf v}  
32  + {\bf \nabla}_h b_s \eta  Since the model comes in several flavors and formulation, it would be
33  + \epsilon_{nh} {\bf \nabla}_h \phi'_{nh}  confusing to present the model algorithm exactly as written into code
34  & = & \vec{\bf G}_{\vec{\bf v}}  along with all the switches and optional terms. Instead, we present
35  - {\bf \nabla}_h \phi'_{hyd}  the algorithm for each of the basic formulations which are:
36  \label{eq-tCsC-Hmom}  \begin{enumerate}
37  \\  \item the semi-implicit pressure method for hydrostatic equations
38  \epsilon_{nh} \frac {\partial{\dot{r}}}{\partial{t}}  with a rigid-lid, variables co-located in time and with
39  + \epsilon_{nh} \partial_r \phi'_{nh}  Adams-Bashforth time-stepping, \label{it:a}
40  & = & \epsilon_{nh} G_{\dot{r}}  \item as \ref{it:a}. but with an implicit linear free-surface, \label{it:b}
41  \label{eq-tCsC-Vmom}  \item as \ref{it:a}. or \ref{it:b}. but with variables staggered in time,
42  \\  \label{it:c}
43  {\bf \nabla}_h \cdot \vec{\bf v} + \partial_r \dot{r}  \item as \ref{it:a}. or \ref{it:b}. but with non-hydrostatic terms included,
44  & = & 0  \item as \ref{it:b}. or \ref{it:c}. but with non-linear free-surface.
45  \label{eq-tCsC-cont}  \end{enumerate}
46    
47    In all the above configurations it is also possible to substitute the
48    Adams-Bashforth with an alternative time-stepping scheme for terms
49    evaluated explicitly in time. Since the over-arching algorithm is
50    independent of the particular time-stepping scheme chosen we will
51    describe first the over-arching algorithm, known as the pressure
52    method, with a rigid-lid model in section
53    \ref{sect:pressure-method-rigid-lid}. This algorithm is essentially
54    unchanged, apart for some coefficients, when the rigid lid assumption
55    is replaced with a linearized implicit free-surface, described in
56    section \ref{sect:pressure-method-linear-backward}. These two flavors
57    of the pressure-method encompass all formulations of the model as it
58    exists today. The integration of explicit in time terms is out-lined
59    in section \ref{sect:adams-bashforth} and put into the context of the
60    overall algorithm in sections \ref{sect:adams-bashforth-sync} and
61    \ref{sect:adams-bashforth-staggered}. Inclusion of non-hydrostatic
62    terms requires applying the pressure method in three dimensions
63    instead of two and this algorithm modification is described in section
64    \ref{sect:non-hydrostatic}. Finally, the free-surface equation may be
65    treated more exactly, including non-linear terms, and this is
66    described in section \ref{sect:nonlinear-freesurface}.
67    
68    
69    \section{Pressure method with rigid-lid}
70    \label{sect:pressure-method-rigid-lid}
71    \begin{rawhtml}
72    <!-- CMIREDIR:pressure_method_rigid_lid: -->
73    \end{rawhtml}
74    
75    \begin{figure}
76    \begin{center}
77    \resizebox{4.0in}{!}{\includegraphics{part2/pressure-method-rigid-lid.eps}}
78    \end{center}
79    \caption{
80    A schematic of the evolution in time of the pressure method
81    algorithm. A prediction for the flow variables at time level $n+1$ is
82    made based only on the explicit terms, $G^{(n+^1/_2)}$, and denoted
83    $u^*$, $v^*$. Next, a pressure field is found such that $u^{n+1}$,
84    $v^{n+1}$ will be non-divergent. Conceptually, the $*$ quantities
85    exist at time level $n+1$ but they are intermediate and only
86    temporary.}
87    \label{fig:pressure-method-rigid-lid}
88    \end{figure}
89    
90    \begin{figure}
91    \begin{center} \fbox{ \begin{minipage}{4.5in} \begin{tabbing}
92    aaa \= aaa \= aaa \= aaa \= aaa \= aaa \kill
93    \filelink{FORWARD\_STEP}{model-src-forward_step.F} \\
94    \> DYNAMICS \\
95    \>\> TIMESTEP \` $u^*$,$v^*$ (\ref{eq:ustar-rigid-lid},\ref{eq:vstar-rigid-lid}) \\
96    \> SOLVE\_FOR\_PRESSURE \\
97    \>\> CALC\_DIV\_GHAT \` $H\widehat{u^*}$,$H\widehat{v^*}$ (\ref{eq:elliptic}) \\
98    \>\> CG2D \` $\eta^{n+1}$ (\ref{eq:elliptic}) \\
99    \> MOMENTUM\_CORRECTION\_STEP  \\
100    \>\> CALC\_GRAD\_PHI\_SURF \` $\nabla \eta^{n+1}$ \\
101    \>\> CORRECTION\_STEP \` $u^{n+1}$,$v^{n+1}$ (\ref{eq:un+1-rigid-lid},\ref{eq:vn+1-rigid-lid})
102    \end{tabbing} \end{minipage} } \end{center}
103    \caption{Calling tree for the pressure method algorithm
104      (\filelink{FORWARD\_STEP}{model-src-forward_step.F})}
105    \label{fig:call-tree-pressure-method}
106    \end{figure}
107    
108    The horizontal momentum and continuity equations for the ocean
109    (\ref{eq:ocean-mom} and \ref{eq:ocean-cont}), or for the atmosphere
110    (\ref{eq:atmos-mom} and \ref{eq:atmos-cont}), can be summarized by:
111    \begin{eqnarray}
112    \partial_t u + g \partial_x \eta & = & G_u \\
113    \partial_t v + g \partial_y \eta & = & G_v \\
114    \partial_x u + \partial_y v + \partial_z w & = & 0
115  \end{eqnarray}  \end{eqnarray}
116  where  where we are adopting the oceanic notation for brevity. All terms in
117  \begin{eqnarray*}  the momentum equations, except for surface pressure gradient, are
118  G_\theta & = &  encapsulated in the $G$ vector. The continuity equation, when
119  - \vec{\bf v} \cdot {\bf \nabla} \theta + {\cal Q}_\theta  integrated over the fluid depth, $H$, and with the rigid-lid/no normal
120  \\  flow boundary conditions applied, becomes:
121  G_S & = &  \begin{equation}
122  - \vec{\bf v} \cdot {\bf \nabla} S + {\cal Q}_S  \partial_x H \widehat{u} + \partial_y H \widehat{v} = 0
123  \\  \label{eq:rigid-lid-continuity}
124  \vec{\bf G}_{\vec{\bf v}}  \end{equation}
125  & = &  Here, $H\widehat{u} = \int_H u dz$ is the depth integral of $u$,
126  - \vec{\bf v} \cdot {\bf \nabla} \vec{\bf v}  similarly for $H\widehat{v}$. The rigid-lid approximation sets $w=0$
127  - f \hat{\bf k} \wedge \vec{\bf v}  at the lid so that it does not move but allows a pressure to be
128  + \vec{\cal F}_{\vec{\bf v}}  exerted on the fluid by the lid. The horizontal momentum equations and
129  \\  vertically integrated continuity equation are be discretized in time
130  G_{\dot{r}}  and space as follows:
131  & = &  \begin{eqnarray}
132  - \vec{\bf v} \cdot {\bf \nabla} \dot{r}  u^{n+1} + \Delta t g \partial_x \eta^{n+1}
133  + {\cal F}_{\dot{r}}  & = & u^{n} + \Delta t G_u^{(n+1/2)}
134  \end{eqnarray*}  \label{eq:discrete-time-u}
135  The exact form of all the ``{\it G}''s terms is described in the next  \\
136  section \ref{sect:discrete}. Here its sufficient to mention that they contains  v^{n+1} + \Delta t g \partial_y \eta^{n+1}
137  all the RHS terms except the pressure/geo-potential terms.  & = & v^{n} + \Delta t G_v^{(n+1/2)}
138    \label{eq:discrete-time-v}
139  The switch $\epsilon_{nh}$ allows one to activate the non-hydrostatic  \\
140  mode ($\epsilon_{nh}=1$) for the ocean model. Otherwise, in the    \partial_x H \widehat{u^{n+1}}
141  hydrostatic limit $\epsilon_{nh} = 0$ and equation \ref{eq-tCsC-Vmom}  + \partial_y H \widehat{v^{n+1}} & = & 0
142  is not used.  \label{eq:discrete-time-cont-rigid-lid}
143    \end{eqnarray}
144  As discussed in section \ref{sect:1.3.6.2}, the equation for $\eta$ is  As written here, terms on the LHS all involve time level $n+1$ and are
145  obtained by integrating the continuity equation over the entire depth  referred to as implicit; the implicit backward time stepping scheme is
146  of the fluid, from $R_{fixed}(x,y)$ up to $R_o(x,y)$. The linear free  being used. All other terms in the RHS are explicit in time. The
147  surface evolves according to:  thermodynamic quantities are integrated forward in time in parallel
148  \begin{eqnarray}  with the flow and will be discussed later. For the purposes of
149  \epsilon_{fs} \partial_t \eta =  describing the pressure method it suffices to say that the hydrostatic
150  \left. \dot{r} \right|_{r=r_{surf}} + \epsilon_{fw} (P-E) =  pressure gradient is explicit and so can be included in the vector
151  - {\bf \nabla} \cdot \int_{R_{fixed}}^{R_o} \vec{\bf v} dr  $G$.
152  + \epsilon_{fw} (P-E)  
153  \label{eq-tCsC-eta}  Substituting the two momentum equations into the depth integrated
154  \end{eqnarray}  continuity equation eliminates $u^{n+1}$ and $v^{n+1}$ yielding an
155    elliptic equation for $\eta^{n+1}$. Equations
156  Here, $\epsilon_{fs}$ is a flag to switch between the free-surface,  \ref{eq:discrete-time-u}, \ref{eq:discrete-time-v} and
157  $\epsilon_{fs}=1$, and a rigid-lid, $\epsilon_{fs}=0$. The flag  \ref{eq:discrete-time-cont-rigid-lid} can then be re-arranged as follows:
158  $\epsilon_{fw}$ determines whether an exchange of fresh water is  \begin{eqnarray}
159  included at the ocean surface (natural BC) ($\epsilon_{fw} = 1$) or  u^{*} & = & u^{n} + \Delta t G_u^{(n+1/2)} \label{eq:ustar-rigid-lid} \\
160  not ($\epsilon_{fw} = 0$).  v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-rigid-lid} \\
161      \partial_x \Delta t g H \partial_x \eta^{n+1}
162  The hydrostatic potential is found by integrating (equation  + \partial_y \Delta t g H \partial_y \eta^{n+1}
 \ref{eq-tCsC-hyd}) with the boundary condition that  
 $\phi'_{hyd}(r=R_o) = 0$:  
 \begin{eqnarray*}  
 & &  
 \int_{r'}^{R_o} \partial_r \phi'_{hyd} dr =  
 \left[ \phi'_{hyd} \right]_{r'}^{R_o} =  
 \int_{r'}^{R_o} - b' dr  
 \\  
 \Rightarrow & &  
 \phi'_{hyd}(x,y,r') = \int_{r'}^{R_o} b' dr  
 \end{eqnarray*}  
   
 \subsection{General method}  
   
 An overview of the general method is now presented with explicit  
 references to the Fortran code. We often refer to the discretized  
 equations of the model that are detailed in the following sections.  
   
 The general algorithm consist of a ``predictor step'' that computes  
 the forward tendencies ("G" terms") comprising of explicit-in-time  
 terms and the ``first guess'' values (star notation): $\theta^*, S^*,  
 \vec{\bf v}^*$ (and $\dot{r}^*$ in non-hydrostatic mode). This is done  
 in the two routines {\it THERMODYNAMICS} and {\it DYNAMICS}.  
   
 Terms that are integrated implicitly in time are handled at the end of  
 the {\it THERMODYNAMICS} and {\it DYNAMICS} routines. Then the  
 surface pressure and non hydrostatic pressure are solved for in ({\it  
 SOLVE\_FOR\_PRESSURE}).  
   
 Finally, in the ``corrector step'', (routine {\it  
 THE\_CORRECTION\_STEP}) the new values of $u,v,w,\theta,S$ are  
 determined (see details in \ref{sect:II.1.3}).  
   
 At this point, the regular time stepping process is complete. However,  
 after the correction step there are optional adjustments such as  
 convective adjustment or filters (zonal FFT filter, shapiro filter)  
 that can be applied on both momentum and tracer fields, just prior to  
 incrementing the time level to $n+1$.  
   
 Since the pressure solver precision is of the order of the ``target  
 residual'' and can be lower than the the computer truncation error,  
 and also because some filters might alter the divergence part of the  
 flow field, a final evaluation of the surface r anomaly $\eta^{n+1}$  
 is performed in {\it CALC\_EXACT\_ETA}. This ensures exact volume  
 conservation. Note that there is no need for an equivalent  
 non-hydrostatic ``exact conservation'' step, since by default $w$ is  
 already computed after the filters are applied.  
   
 Optional forcing terms (usually part of a physics ``package''), that  
 account for a specific source or sink process (e.g. condensation as a  
 sink of water vapor Q) are generally incorporated in the main  
 algorithm as follows: at the the beginning of the time step, the  
 additional tendencies are computed as a function of the present state  
 (time step $n$) and external forcing; then within the main part of  
 model, only those new tendencies are added to the model variables.  
   
 [more details needed]\\  
   
 The atmospheric physics follows this general scheme.  
   
 [more about C\_grid, A\_grid conversion \& drag term]\\  
   
   
   
 \subsection{Standard synchronous time stepping}  
   
 In the standard formulation, the surface pressure is evaluated at time  
 step n+1 (an implicit method).  Equations \ref{eq-tCsC-theta} to  
 \ref{eq-tCsC-cont} are then discretized in time as follows:  
 \begin{eqnarray}  
 \left[ 1 - \partial_r \kappa_v^\theta \partial_r \right]  
 \theta^{n+1} & = & \theta^*  
 \label{eq-tDsC-theta}  
 \\  
 \left[ 1 - \partial_r \kappa_v^S \partial_r \right]  
 S^{n+1} & = & S^*  
 \label{eq-tDsC-salt}  
 \\  
 %{b'}^{n} & = & b'(\theta^{n},S^{n},r)  
 %\partial_r {\phi'_{hyd}}^{n} & = & {-b'}^{n}  
 %\\  
 {\phi'_{hyd}}^{n} & = & \int_{r'}^{R_o} b'(\theta^{n},S^{n},r) dr  
 \label{eq-tDsC-hyd}  
 \\  
 \vec{\bf v} ^{n+1}  
 + \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}  
 + \epsilon_{nh} \Delta t {\bf \nabla} {\phi'_{nh}}^{n+1}  
 - \partial_r A_v \partial_r \vec{\bf v}^{n+1}  
163  & = &  & = &
164  \vec{\bf v}^*    \partial_x H \widehat{u^{*}}
165  \label{eq-tDsC-Hmom}  + \partial_y H \widehat{v^{*}} \label{eq:elliptic}
166  \\  \\
167  \epsilon_{fs} {\eta}^{n+1} + \Delta t  u^{n+1} & = & u^{*} - \Delta t g \partial_x \eta^{n+1} \label{eq:un+1-rigid-lid}\\
168  {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o} \vec{\bf v}^{n+1} dr  v^{n+1} & = & v^{*} - \Delta t g \partial_y \eta^{n+1} \label{eq:vn+1-rigid-lid}
 & = &  
     \epsilon_{fs} {\eta}^{n} + \epsilon_{fw} \Delta_t (P-E)^{n}  
 \nonumber  
 \\  
 % = \epsilon_{fs} {\eta}^{n} & + & \epsilon_{fw} \Delta_t (P-E)^{n}  
 \label{eq-tDsC-eta}  
 \\  
 \epsilon_{nh} \left( \dot{r} ^{n+1}  
 + \Delta t \partial_r {\phi'_{nh}} ^{n+1}  
 \right)  
 & = & \epsilon_{nh} \dot{r}^*  
 \label{eq-tDsC-Vmom}  
 \\  
 {\bf \nabla}_h \cdot \vec{\bf v}^{n+1} + \partial_r \dot{r}^{n+1}  
 & = & 0  
 \label{eq-tDsC-cont}  
169  \end{eqnarray}  \end{eqnarray}
170  where  Equations \ref{eq:ustar-rigid-lid} to \ref{eq:vn+1-rigid-lid}, solved
171    sequentially, represent the pressure method algorithm used in the
172    model. The essence of the pressure method lies in the fact that any
173    explicit prediction for the flow would lead to a divergence flow field
174    so a pressure field must be found that keeps the flow non-divergent
175    over each step of the integration. The particular location in time of
176    the pressure field is somewhat ambiguous; in
177    Fig.~\ref{fig:pressure-method-rigid-lid} we depicted as co-located
178    with the future flow field (time level $n+1$) but it could equally
179    have been drawn as staggered in time with the flow.
180    
181    The correspondence to the code is as follows:
182    \begin{itemize}
183    \item
184    the prognostic phase, equations \ref{eq:ustar-rigid-lid} and \ref{eq:vstar-rigid-lid},
185    stepping forward $u^n$ and $v^n$ to $u^{*}$ and $v^{*}$ is coded in
186    \filelink{TIMESTEP()}{model-src-timestep.F}
187    \item
188    the vertical integration, $H \widehat{u^*}$ and $H
189    \widehat{v^*}$, divergence and inversion of the elliptic operator in
190    equation \ref{eq:elliptic} is coded in
191    \filelink{SOLVE\_FOR\_PRESSURE()}{model-src-solve_for_pressure.F}
192    \item
193    finally, the new flow field at time level $n+1$ given by equations
194    \ref{eq:un+1-rigid-lid} and \ref{eq:vn+1-rigid-lid} is calculated in
195    \filelink{CORRECTION\_STEP()}{model-src-correction_step.F}.
196    \end{itemize}
197    The calling tree for these routines is given in
198    Fig.~\ref{fig:call-tree-pressure-method}.
199    
200    
201    %\paragraph{Need to discuss implicit viscosity somewhere:}
202    In general, the horizontal momentum time-stepping can contain some terms
203    that are treated implicitly in time,
204    such as the vertical viscosity when using the backward time-stepping scheme
205    (\varlink{implicitViscosity}{implicitViscosity} {\it =.TRUE.}).
206    The method used to solve those implicit terms is provided in
207    section \ref{sect:implicit-backward-stepping}, and modifies
208    equations \ref{eq:discrete-time-u} and \ref{eq:discrete-time-v} to
209    give:
210  \begin{eqnarray}  \begin{eqnarray}
211  \theta^* & = &  u^{n+1} - \Delta t \partial_z A_v \partial_z u^{n+1}
212  \theta ^{n} + \Delta t G_{\theta} ^{(n+1/2)}  + \Delta t g \partial_x \eta^{n+1} & = & u^{n} + \Delta t G_u^{(n+1/2)}
 \\  
 S^* & = &  
 S ^{n} + \Delta t G_{S} ^{(n+1/2)}  
 \\  
 \vec{\bf v}^* & = &  
 \vec{\bf v}^{n} + \Delta t \vec{\bf G}_{\vec{\bf v}} ^{(n+1/2)}  
 + \Delta t  {\bf \nabla}_h {\phi'_{hyd}}^{(n+1/2)}  
213  \\  \\
214  \dot{r}^* & = &  v^{n+1} - \Delta t \partial_z A_v \partial_z v^{n+1}
215  \dot{r} ^{n} + \Delta t G_{\dot{r}} ^{(n+1/2)}  + \Delta t g \partial_y \eta^{n+1} & = & v^{n} + \Delta t G_v^{(n+1/2)}
216  \end{eqnarray}  \end{eqnarray}
217    
 Note that implicit vertical viscosity and diffusivity terms are not  
 considered as part of the ``{\it G}'' terms, but are written  
 separately here.  
218    
219  The default time-stepping method is the Adams-Bashforth quasi-second  \section{Pressure method with implicit linear free-surface}
220  order scheme in which the ``G'' terms are extrapolated forward in time  \label{sect:pressure-method-linear-backward}
221  from time-levels $n-1$ and $n$ to time-level $n+1/2$ and provides a  \begin{rawhtml}
222  simple but stable algorithm:  <!-- CMIREDIR:pressure_method_linear_backward: -->
223    \end{rawhtml}
224    
225    The rigid-lid approximation filters out external gravity waves
226    subsequently modifying the dispersion relation of barotropic Rossby
227    waves. The discrete form of the elliptic equation has some zero
228    eigen-values which makes it a potentially tricky or inefficient
229    problem to solve.
230    
231    The rigid-lid approximation can be easily replaced by a linearization
232    of the free-surface equation which can be written:
233  \begin{equation}  \begin{equation}
234  G^{(n+1/2)} = G^n + (1/2+\epsilon_{AB}) (G^n - G^{n-1})  \partial_t \eta + \partial_x H \widehat{u} + \partial_y H \widehat{v} = P-E+R
235    \label{eq:linear-free-surface=P-E}
236  \end{equation}  \end{equation}
237  where $\epsilon_{AB}$ is a small number used to stabilize the time  which differs from the depth integrated continuity equation with
238  stepping.  rigid-lid (\ref{eq:rigid-lid-continuity}) by the time-dependent term
239    and fresh-water source term.
240  In the standard non-staggered formulation, the Adams-Bashforth time  
241  stepping is also applied to the hydrostatic pressure/geo-potential  Equation \ref{eq:discrete-time-cont-rigid-lid} in the rigid-lid
242  gradient, $\nabla_h \Phi'_{hyd}$.  Note that presently, this term is in  pressure method is then replaced by the time discretization of
243  fact incorporated to the $\vec{\bf G}_{\vec{\bf v}}$ arrays ({\bf  \ref{eq:linear-free-surface=P-E} which is:
244  gU,gV}).  \begin{equation}
245  \marginpar{JMC: Clarify ``this term''?}  \eta^{n+1}
246    + \Delta t \partial_x H \widehat{u^{n+1}}
247  \fbox{ \begin{minipage}{4.75in}  + \Delta t \partial_y H \widehat{v^{n+1}}
248  {\em S/R TIMESTEP} ({\em timestep.F})  =
249    \eta^{n}
250  $G_u^n$: {\bf Gu} ({\em DYNVARS.h})  + \Delta t ( P - E )
251    \label{eq:discrete-time-backward-free-surface}
252  $G_u^{n-1}, u^*$: {\bf GuNm1} ({\em DYNVARS.h})  \end{equation}
253    where the use of flow at time level $n+1$ makes the method implicit
254  $G_v^n$: {\bf Gv} ({\em DYNVARS.h})  and backward in time. This is the preferred scheme since it still
255    filters the fast unresolved wave motions by damping them. A centered
256  $G_v^{n-1}, v^*$: {\bf GvNm1} ({\em DYNVARS.h})  scheme, such as Crank-Nicholson (see section \ref{sect:freesurf-CrankNick}),
257    would alias the energy of the fast modes onto slower modes of motion.
258  $G_u^{(n+1/2)}$: {\bf GuTmp} (local)  
259    As for the rigid-lid pressure method, equations
260  $G_v^{(n+1/2)}$: {\bf GvTmp} (local)  \ref{eq:discrete-time-u}, \ref{eq:discrete-time-v} and
261    \ref{eq:discrete-time-backward-free-surface} can be re-arranged as follows:
262  \end{minipage} }  \begin{eqnarray}
263    u^{*} & = & u^{n} + \Delta t G_u^{(n+1/2)} \label{eq:ustar-backward-free-surface} \\
264    v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-backward-free-surface} \\
265    \eta^* & = & \epsilon_{fs} \left( \eta^{n} + \Delta t (P-E) \right)- \Delta t
266      \partial_x H \widehat{u^{*}}
267    + \partial_y H \widehat{v^{*}}
268    \\
269      \partial_x g H \partial_x \eta^{n+1}
270    & + & \partial_y g H \partial_y \eta^{n+1}
271     - \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2}
272     =
273    - \frac{\eta^*}{\Delta t^2}
274    \label{eq:elliptic-backward-free-surface}
275    \\
276    u^{n+1} & = & u^{*} - \Delta t g \partial_x \eta^{n+1} \label{eq:un+1-backward-free-surface}\\
277    v^{n+1} & = & v^{*} - \Delta t g \partial_y \eta^{n+1} \label{eq:vn+1-backward-free-surface}
278    \end{eqnarray}
279    Equations~\ref{eq:ustar-backward-free-surface}
280    to~\ref{eq:vn+1-backward-free-surface}, solved sequentially, represent
281    the pressure method algorithm with a backward implicit, linearized
282    free surface. The method is still formerly a pressure method because
283    in the limit of large $\Delta t$ the rigid-lid method is
284    recovered. However, the implicit treatment of the free-surface allows
285    the flow to be divergent and for the surface pressure/elevation to
286    respond on a finite time-scale (as opposed to instantly). To recover
287    the rigid-lid formulation, we introduced a switch-like parameter,
288    $\epsilon_{fs}$ (\varlink{freesurfFac}{freesurfFac}),
289    which selects between the free-surface and rigid-lid;
290    $\epsilon_{fs}=1$ allows the free-surface to evolve; $\epsilon_{fs}=0$
291    imposes the rigid-lid. The evolution in time and location of variables
292    is exactly as it was for the rigid-lid model so that
293    Fig.~\ref{fig:pressure-method-rigid-lid} is still
294    applicable. Similarly, the calling sequence, given in
295    Fig.~\ref{fig:call-tree-pressure-method}, is as for the
296    pressure-method.
297    
298    
299    \section{Explicit time-stepping: Adams-Bashforth}
300    \label{sect:adams-bashforth}
301    \begin{rawhtml}
302    <!-- CMIREDIR:adams_bashforth: -->
303    \end{rawhtml}
304    
305    In describing the the pressure method above we deferred describing the
306    time discretization of the explicit terms. We have historically used
307    the quasi-second order Adams-Bashforth method for all explicit terms
308    in both the momentum and tracer equations. This is still the default
309    mode of operation but it is now possible to use alternate schemes for
310    tracers (see section \ref{sect:tracer-advection}).
311    
312    \begin{figure}
313    \begin{center} \fbox{ \begin{minipage}{4.5in} \begin{tabbing}
314    aaa \= aaa \= aaa \= aaa \= aaa \= aaa \kill
315    FORWARD\_STEP \\
316    \> THERMODYNAMICS \\
317    \>\> CALC\_GT \\
318    \>\>\> GAD\_CALC\_RHS \` $G_\theta^n = G_\theta( u, \theta^n )$ \\
319    \>either\>\> EXTERNAL\_FORCING \` $G_\theta^n = G_\theta^n + {\cal Q}$ \\
320    \>\>\> ADAMS\_BASHFORTH2 \` $G_\theta^{(n+1/2)}$ (\ref{eq:adams-bashforth2}) \\
321    \>or\>\> EXTERNAL\_FORCING \` $G_\theta^{(n+1/2)} = G_\theta^{(n+1/2)} + {\cal Q}$ \\
322    \>\> TIMESTEP\_TRACER \` $\tau^*$ (\ref{eq:taustar}) \\
323    \>\> IMPLDIFF \` $\tau^{(n+1)}$ (\ref{eq:tau-n+1-implicit})
324    \end{tabbing} \end{minipage} } \end{center}
325    \caption{
326    Calling tree for the Adams-Bashforth time-stepping of temperature with
327    implicit diffusion.
328      (\filelink{THERMODYNAMICS}{model-src-thermodynamics.F},
329       \filelink{ADAMS\_BASHFORTH2}{model-src-adams_bashforth2.F})}
330    \label{fig:call-tree-adams-bashforth}
331    \end{figure}
332    
333    In the previous sections, we summarized an explicit scheme as:
334    \begin{equation}
335    \tau^{*} = \tau^{n} + \Delta t G_\tau^{(n+1/2)}
336    \label{eq:taustar}
337    \end{equation}
338    where $\tau$ could be any prognostic variable ($u$, $v$, $\theta$ or
339    $S$) and $\tau^*$ is an explicit estimate of $\tau^{n+1}$ and would be
340    exact if not for implicit-in-time terms. The parenthesis about $n+1/2$
341    indicates that the term is explicit and extrapolated forward in time
342    and for this we use the quasi-second order Adams-Bashforth method:
343    \begin{equation}
344    G_\tau^{(n+1/2)} = ( 3/2 + \epsilon_{AB}) G_\tau^n
345    - ( 1/2 + \epsilon_{AB}) G_\tau^{n-1}
346    \label{eq:adams-bashforth2}
347    \end{equation}
348    This is a linear extrapolation, forward in time, to
349    $t=(n+1/2+{\epsilon_{AB}})\Delta t$. An extrapolation to the mid-point
350    in time, $t=(n+1/2)\Delta t$, corresponding to $\epsilon_{AB}=0$,
351    would be second order accurate but is weakly unstable for oscillatory
352    terms. A small but finite value for $\epsilon_{AB}$ stabilizes the
353    method. Strictly speaking, damping terms such as diffusion and
354    dissipation, and fixed terms (forcing), do not need to be inside the
355    Adams-Bashforth extrapolation. However, in the current code, it is
356    simpler to include these terms and this can be justified if the flow
357    and forcing evolves smoothly. Problems can, and do, arise when forcing
358    or motions are high frequency and this corresponds to a reduced
359    stability compared to a simple forward time-stepping of such terms.
360    The model offers the possibility to leave the tracer and momentum
361    forcing terms and the dissipation terms outside the
362    Adams-Bashforth extrapolation, by turning off the logical flags
363    \varlink{forcing\_In\_AB}{forcing_In_AB}
364    (parameter file {\em data}, namelist {\em PARM01}, default value = True).
365    (\varlink{tracForcingOutAB}{tracForcingOutAB}, default=0,
366    \varlink{momForcingOutAB}{momForcingOutAB}, default=0)
367    and \varlink{momDissip\_In\_AB}{momDissip_In_AB}
368    (parameter file {\em data}, namelist {\em PARM01}, default value = True).
369    respectively.
370    
371    A stability analysis for an oscillation equation should be given at this point.
372    \marginpar{AJA needs to find his notes on this...}
373    
374    A stability analysis for a relaxation equation should be given at this point.
375    \marginpar{...and for this too.}
376    
377    \begin{figure}
378    \begin{center}
379    \resizebox{5.5in}{!}{\includegraphics{part2/oscil+damp_AB2.eps}}
380    \end{center}
381    \caption{
382    Oscillatory and damping response of
383    quasi-second order Adams-Bashforth scheme for different values
384    of the $\epsilon_{AB}$ parameter (0., 0.1, 0.25, from top to bottom)
385    The analytical solution (in black), the physical mode (in blue)
386    and the numerical mode (in red) are represented with a CFL
387    step of 0.1.
388    The left column represents the oscillatory response
389    on the complex plane for CFL ranging from 0.1 up to 0.9.
390    The right column represents the damping response amplitude
391    (y-axis) function of the CFL (x-axis).
392    }
393    \label{fig:adams-bashforth-respons}
394    \end{figure}
395    
396    
 \subsection{Stagger baroclinic time stepping}  
397    
398  An alternative to synchronous time-stepping is to stagger the momentum  \section{Implicit time-stepping: backward method}
399  and tracer fields in time. This allows the evaluation and gradient of  \label{sect:implicit-backward-stepping}
400  $\phi'_{hyd}$ to be centered in time with out needing to use the  \begin{rawhtml}
401  Adams-Bashforth extrapoltion. This option is known as staggered  <!-- CMIREDIR:implicit_time-stepping_backward: -->
402  baroclinic time stepping because tracer and momentum are stepped  \end{rawhtml}
403  forward-in-time one after the other.  It can be activated by turning  
404  on a run-time parameter {\bf staggerTimeStep} in namelist ``{\it  Vertical diffusion and viscosity can be treated implicitly in time
405  PARM01}''.  using the backward method which is an intrinsic scheme.
406    Recently, the option to treat the vertical advection
407  The main advantage of staggered time-stepping compared to synchronous,  implicitly has been added, but not yet tested; therefore,
408  is improved stability to internal gravity wave motions and a very  the description hereafter is limited to diffusion and viscosity.
409  natural implementation of a 2nd order in time hydrostatic  For tracers,
410  pressure/geo-potential gradient term. However, synchronous  the time discretized equation is:
411  time-stepping might be better for convection problems, time dependent  \begin{equation}
412  forcing and diagnosing the model are also easier and it allows a more  \tau^{n+1} - \Delta t \partial_r \kappa_v \partial_r \tau^{n+1} =
413  efficient parallel decomposition.  \tau^{n} + \Delta t G_\tau^{(n+1/2)}
414    \label{eq:implicit-diffusion}
415    \end{equation}
416    where $G_\tau^{(n+1/2)}$ is the remaining explicit terms extrapolated
417    using the Adams-Bashforth method as described above.  Equation
418    \ref{eq:implicit-diffusion} can be split split into:
419    \begin{eqnarray}
420    \tau^* & = & \tau^{n} + \Delta t G_\tau^{(n+1/2)}
421    \label{eq:taustar-implicit} \\
422    \tau^{n+1} & = & {\cal L}_\tau^{-1} ( \tau^* )
423    \label{eq:tau-n+1-implicit}
424    \end{eqnarray}
425    where ${\cal L}_\tau^{-1}$ is the inverse of the operator
426    \begin{equation}
427    {\cal L} = \left[ 1 + \Delta t \partial_r \kappa_v \partial_r \right]
428    \end{equation}
429    Equation \ref{eq:taustar-implicit} looks exactly as \ref{eq:taustar}
430    while \ref{eq:tau-n+1-implicit} involves an operator or matrix
431    inversion. By re-arranging \ref{eq:implicit-diffusion} in this way we
432    have cast the method as an explicit prediction step and an implicit
433    step allowing the latter to be inserted into the over all algorithm
434    with minimal interference.
435    
436    Fig.~\ref{fig:call-tree-adams-bashforth} shows the calling sequence for
437    stepping forward a tracer variable such as temperature.
438    
439    In order to fit within the pressure method, the implicit viscosity
440    must not alter the barotropic flow. In other words, it can only
441    redistribute momentum in the vertical. The upshot of this is that
442    although vertical viscosity may be backward implicit and
443    unconditionally stable, no-slip boundary conditions may not be made
444    implicit and are thus cast as a an explicit drag term.
445    
446    \section{Synchronous time-stepping: variables co-located in time}
447    \label{sect:adams-bashforth-sync}
448    \begin{rawhtml}
449    <!-- CMIREDIR:adams_bashforth_sync: -->
450    \end{rawhtml}
451    
452    \begin{figure}
453    \begin{center}
454    \resizebox{5.0in}{!}{\includegraphics{part2/adams-bashforth-sync.eps}}
455    \end{center}
456    \caption{
457    A schematic of the explicit Adams-Bashforth and implicit time-stepping
458    phases of the algorithm. All prognostic variables are co-located in
459    time. Explicit tendencies are evaluated at time level $n$ as a
460    function of the state at that time level (dotted arrow). The explicit
461    tendency from the previous time level, $n-1$, is used to extrapolate
462    tendencies to $n+1/2$ (dashed arrow). This extrapolated tendency
463    allows variables to be stably integrated forward-in-time to render an
464    estimate ($*$-variables) at the $n+1$ time level (solid
465    arc-arrow). The operator ${\cal L}$ formed from implicit-in-time terms
466    is solved to yield the state variables at time level $n+1$. }
467    \label{fig:adams-bashforth-sync}
468    \end{figure}
469    
470    \begin{figure}
471    \begin{center} \fbox{ \begin{minipage}{4.7in} \begin{tabbing}
472    aaa \= aaa \= aaa \= aaa \= aaa \= aaa \kill
473    FORWARD\_STEP \\
474    \>\> EXTERNAL\_FIELDS\_LOAD\\
475    \>\> DO\_ATMOSPHERIC\_PHYS \\
476    \>\> DO\_OCEANIC\_PHYS \\
477    \> THERMODYNAMICS \\
478    \>\> CALC\_GT \\
479    \>\>\> GAD\_CALC\_RHS \` $G_\theta^n = G_\theta( u, \theta^n )$ (\ref{eq:Gt-n-sync})\\
480    \>\>\> EXTERNAL\_FORCING \` $G_\theta^n = G_\theta^n + {\cal Q}$ \\
481    \>\>\> ADAMS\_BASHFORTH2 \` $G_\theta^{(n+1/2)}$ (\ref{eq:Gt-n+5-sync}) \\
482    \>\> TIMESTEP\_TRACER \` $\theta^*$ (\ref{eq:tstar-sync}) \\
483    \>\> IMPLDIFF \` $\theta^{(n+1)}$ (\ref{eq:t-n+1-sync}) \\
484    \> DYNAMICS \\
485    \>\> CALC\_PHI\_HYD \` $\phi_{hyd}^n$ (\ref{eq:phi-hyd-sync}) \\
486    \>\> MOM\_FLUXFORM or MOM\_VECINV \` $G_{\vec{\bf v}}^n$ (\ref{eq:Gv-n-sync})\\
487    \>\> TIMESTEP \` $\vec{\bf v}^*$ (\ref{eq:Gv-n+5-sync}, \ref{eq:vstar-sync}) \\
488    \>\> IMPLDIFF \` $\vec{\bf v}^{**}$ (\ref{eq:vstarstar-sync}) \\
489    \> UPDATE\_R\_STAR or UPDATE\_SURF\_DR \` (NonLin-FS only)\\
490    \> SOLVE\_FOR\_PRESSURE \\
491    \>\> CALC\_DIV\_GHAT \` $\eta^*$ (\ref{eq:nstar-sync}) \\
492    \>\> CG2D \` $\eta^{n+1}$ (\ref{eq:elliptic-sync}) \\
493    \> MOMENTUM\_CORRECTION\_STEP  \\
494    \>\> CALC\_GRAD\_PHI\_SURF \` $\nabla \eta^{n+1}$ \\
495    \>\> CORRECTION\_STEP \` $u^{n+1}$,$v^{n+1}$ (\ref{eq:v-n+1-sync})\\
496    \> TRACERS\_CORRECTION\_STEP  \\
497    \>\> CYCLE\_TRACER \` $\theta^{n+1}$ \\
498    \>\> FILTER \` Shapiro Filter, Zonal Filter (FFT) \\
499    \>\> CONVECTIVE\_ADJUSTMENT \` \\
500    \end{tabbing} \end{minipage} } \end{center}
501    \caption{
502    Calling tree for the overall synchronous algorithm using
503    Adams-Bashforth time-stepping.
504    The place where the model geometry
505    ({\bf hFac} factors) is updated is added here but is only relevant
506    for the non-linear free-surface algorithm.
507    For completeness, the external forcing,
508    ocean and atmospheric physics have been added, although they are mainly
509    optional}
510    \label{fig:call-tree-adams-bashforth-sync}
511    \end{figure}
512    
513    The Adams-Bashforth extrapolation of explicit tendencies fits neatly
514    into the pressure method algorithm when all state variables are
515    co-located in time. Fig.~\ref{fig:adams-bashforth-sync} illustrates
516    the location of variables in time and the evolution of the algorithm
517    with time. The algorithm can be represented by the sequential solution
518    of the follow equations:
519    \begin{eqnarray}
520    G_{\theta,S}^{n} & = & G_{\theta,S} ( u^n, \theta^n, S^n )
521    \label{eq:Gt-n-sync} \\
522    G_{\theta,S}^{(n+1/2)} & = & (3/2+\epsilon_{AB}) G_{\theta,S}^{n}-(1/2+\epsilon_{AB}) G_{\theta,S}^{n-1}
523    \label{eq:Gt-n+5-sync} \\
524    (\theta^*,S^*) & = & (\theta^{n},S^{n}) + \Delta t G_{\theta,S}^{(n+1/2)}
525    \label{eq:tstar-sync} \\
526    (\theta^{n+1},S^{n+1}) & = & {\cal L}^{-1}_{\theta,S} (\theta^*,S^*)
527    \label{eq:t-n+1-sync} \\
528    \phi^n_{hyd} & = & \int b(\theta^n,S^n) dr
529    \label{eq:phi-hyd-sync} \\
530    \vec{\bf G}_{\vec{\bf v}}^{n} & = & \vec{\bf G}_{\vec{\bf v}} ( \vec{\bf v}^n, \phi^n_{hyd} )
531    \label{eq:Gv-n-sync} \\
532    \vec{\bf G}_{\vec{\bf v}}^{(n+1/2)} & = & (3/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n} - (1/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n-1}
533    \label{eq:Gv-n+5-sync} \\
534    \vec{\bf v}^{*} & = & \vec{\bf v}^{n} + \Delta t \vec{\bf G}_{\vec{\bf v}}^{(n+1/2)}
535    \label{eq:vstar-sync} \\
536    \vec{\bf v}^{**} & = & {\cal L}_{\vec{\bf v}}^{-1} ( \vec{\bf v}^* )
537    \label{eq:vstarstar-sync} \\
538    \eta^* & = & \epsilon_{fs} \left( \eta^{n} + \Delta t (P-E) \right)- \Delta t
539      \nabla \cdot H \widehat{ \vec{\bf v}^{**} }
540    \label{eq:nstar-sync} \\
541    \nabla \cdot g H \nabla \eta^{n+1} & - & \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2}
542    ~ = ~ - \frac{\eta^*}{\Delta t^2}
543    \label{eq:elliptic-sync} \\
544    \vec{\bf v}^{n+1} & = & \vec{\bf v}^{*} - \Delta t g \nabla \eta^{n+1}
545    \label{eq:v-n+1-sync}
546    \end{eqnarray}
547    Fig.~\ref{fig:adams-bashforth-sync} illustrates the location of
548    variables in time and evolution of the algorithm with time. The
549    Adams-Bashforth extrapolation of the tracer tendencies is illustrated
550    by the dashed arrow, the prediction at $n+1$ is indicated by the
551    solid arc. Inversion of the implicit terms, ${\cal
552    L}^{-1}_{\theta,S}$, then yields the new tracer fields at $n+1$. All
553    these operations are carried out in subroutine {\em THERMODYNAMICS} an
554    subsidiaries, which correspond to equations \ref{eq:Gt-n-sync} to
555    \ref{eq:t-n+1-sync}.
556    Similarly illustrated is the Adams-Bashforth extrapolation of
557    accelerations, stepping forward and solving of implicit viscosity and
558    surface pressure gradient terms, corresponding to equations
559    \ref{eq:Gv-n-sync} to \ref{eq:v-n+1-sync}.
560    These operations are carried out in subroutines {\em DYNAMCIS}, {\em
561    SOLVE\_FOR\_PRESSURE} and {\em MOMENTUM\_CORRECTION\_STEP}. This, then,
562    represents an entire algorithm for stepping forward the model one
563    time-step. The corresponding calling tree is given in
564    \ref{fig:call-tree-adams-bashforth-sync}.
565    
566    \section{Staggered baroclinic time-stepping}
567    \label{sect:adams-bashforth-staggered}
568    \begin{rawhtml}
569    <!-- CMIREDIR:adams_bashforth_staggered: -->
570    \end{rawhtml}
571    
572    \begin{figure}
573    \begin{center}
574    \resizebox{5.5in}{!}{\includegraphics{part2/adams-bashforth-staggered.eps}}
575    \end{center}
576    \caption{
577    A schematic of the explicit Adams-Bashforth and implicit time-stepping
578    phases of the algorithm but with staggering in time of thermodynamic
579    variables with the flow.
580    Explicit momentum tendencies are evaluated at time level $n-1/2$ as a
581    function of the flow field at that time level $n-1/2$.
582    The explicit tendency from the previous time level, $n-3/2$, is used to
583    extrapolate tendencies to $n$ (dashed arrow).
584    The hydrostatic pressure/geo-potential $\phi_{hyd}$ is evaluated directly
585    at time level $n$ (vertical arrows) and used with the extrapolated tendencies
586    to step forward the flow variables from $n-1/2$ to $n+1/2$ (solid arc-arrow).
587    The implicit-in-time operator ${\cal L}_{\bf u,v}$ (vertical arrows) is
588    then applied to the previous estimation of the the flow field ($*$-variables)
589    and yields to the two velocity components $u,v$ at time level $n+1/2$.
590    These are then used to calculate the advection term (dashed arc-arrow)
591    of the thermo-dynamics tendencies at time step $n$.
592    The extrapolated thermodynamics tendency, from time level $n-1$ and $n$
593    to $n+1/2$, allows thermodynamic variables to be stably integrated
594    forward-in-time (solid arc-arrow) up to time level $n+1$.
595    }
596    \label{fig:adams-bashforth-staggered}
597    \end{figure}
598    
599    For well stratified problems, internal gravity waves may be the
600    limiting process for determining a stable time-step. In the
601    circumstance, it is more efficient to stagger in time the
602    thermodynamic variables with the flow
603    variables. Fig.~\ref{fig:adams-bashforth-staggered} illustrates the
604    staggering and algorithm. The key difference between this and
605    Fig.~\ref{fig:adams-bashforth-sync} is that the thermodynamic variables
606    are solved after the dynamics, using the recently updated flow field.
607    This essentially allows the gravity wave terms to leap-frog in
608    time giving second order accuracy and more stability.
609    
610    The essential change in the staggered algorithm is that the
611    thermodynamics solver is delayed from half a time step,
612    allowing the use of the most recent velocities to compute
613    the advection terms. Once the thermodynamics fields are
614    updated, the hydrostatic pressure is computed
615    to step forwrad the dynamics.
616    Note that the pressure gradient must also be taken out of the
617    Adams-Bashforth extrapolation. Also, retaining the integer time-levels,
618    $n$ and $n+1$, does not give a user the sense of where variables are
619    located in time.  Instead, we re-write the entire algorithm,
620    \ref{eq:Gt-n-sync} to \ref{eq:v-n+1-sync}, annotating the
621    position in time of variables appropriately:
622    \begin{eqnarray}
623    \phi^{n}_{hyd} & = & \int b(\theta^{n},S^{n}) dr
624    \label{eq:phi-hyd-staggered} \\
625    \vec{\bf G}_{\vec{\bf v}}^{n-1/2} & = & \vec{\bf G}_{\vec{\bf v}} ( \vec{\bf v}^{n-1/2} )
626    \label{eq:Gv-n-staggered} \\
627    \vec{\bf G}_{\vec{\bf v}}^{(n)} & = & (3/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n-1/2} - (1/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n-3/2}
628    \label{eq:Gv-n+5-staggered} \\
629    \vec{\bf v}^{*} & = & \vec{\bf v}^{n-1/2} + \Delta t \left( \vec{\bf G}_{\vec{\bf v}}^{(n)} - \nabla \phi_{hyd}^{n} \right)
630    \label{eq:vstar-staggered} \\
631    \vec{\bf v}^{**} & = & {\cal L}_{\vec{\bf v}}^{-1} ( \vec{\bf v}^* )
632    \label{eq:vstarstar-staggered} \\
633    \eta^* & = & \epsilon_{fs} \left( \eta^{n-1/2} + \Delta t (P-E)^n \right)- \Delta t
634      \nabla \cdot H \widehat{ \vec{\bf v}^{**} }
635    \label{eq:nstar-staggered} \\
636    \nabla \cdot g H \nabla \eta^{n+1/2} & - & \frac{\epsilon_{fs} \eta^{n+1/2}}{\Delta t^2}
637    ~ = ~ - \frac{\eta^*}{\Delta t^2}
638    \label{eq:elliptic-staggered} \\
639    \vec{\bf v}^{n+1/2} & = & \vec{\bf v}^{*} - \Delta t g \nabla \eta^{n+1/2}
640    \label{eq:v-n+1-staggered} \\
641    G_{\theta,S}^{n} & = & G_{\theta,S} ( u^{n+1/2}, \theta^{n}, S^{n} )
642    \label{eq:Gt-n-staggered} \\
643    G_{\theta,S}^{(n+1/2)} & = & (3/2+\epsilon_{AB}) G_{\theta,S}^{n}-(1/2+\epsilon_{AB}) G_{\theta,S}^{n-1}
644    \label{eq:Gt-n+5-staggered} \\
645    (\theta^*,S^*) & = & (\theta^{n},S^{n}) + \Delta t G_{\theta,S}^{(n+1/2)}
646    \label{eq:tstar-staggered} \\
647    (\theta^{n+1},S^{n+1}) & = & {\cal L}^{-1}_{\theta,S} (\theta^*,S^*)
648    \label{eq:t-n+1-staggered}
649    \end{eqnarray}
650    The corresponding calling tree is given in
651    \ref{fig:call-tree-adams-bashforth-staggered}.
652    The staggered algorithm is activated with the run-time flag
653    {\bf staggerTimeStep}{\em=.TRUE.} in parameter file {\em data},
654    namelist {\em PARM01}.
655    
656    \begin{figure}
657    \begin{center} \fbox{ \begin{minipage}{4.7in} \begin{tabbing}
658    aaa \= aaa \= aaa \= aaa \= aaa \= aaa \kill
659    FORWARD\_STEP \\
660    \>\> EXTERNAL\_FIELDS\_LOAD\\
661    \>\> DO\_ATMOSPHERIC\_PHYS \\
662    \>\> DO\_OCEANIC\_PHYS \\
663    \> DYNAMICS \\
664    \>\> CALC\_PHI\_HYD \` $\phi_{hyd}^n$ (\ref{eq:phi-hyd-staggered}) \\
665    \>\> MOM\_FLUXFORM or MOM\_VECINV \` $G_{\vec{\bf v}}^{n-1/2}$
666        (\ref{eq:Gv-n-staggered})\\
667    \>\> TIMESTEP \` $\vec{\bf v}^*$ (\ref{eq:Gv-n+5-staggered},
668                                      \ref{eq:vstar-staggered}) \\
669    \>\> IMPLDIFF \` $\vec{\bf v}^{**}$ (\ref{eq:vstarstar-staggered}) \\
670    \> UPDATE\_R\_STAR or UPDATE\_SURF\_DR \` (NonLin-FS only)\\
671    \> SOLVE\_FOR\_PRESSURE \\
672    \>\> CALC\_DIV\_GHAT \` $\eta^*$ (\ref{eq:nstar-staggered}) \\
673    \>\> CG2D \` $\eta^{n+1/2}$ (\ref{eq:elliptic-staggered}) \\
674    \> MOMENTUM\_CORRECTION\_STEP  \\
675    \>\> CALC\_GRAD\_PHI\_SURF \` $\nabla \eta^{n+1/2}$ \\
676    \>\> CORRECTION\_STEP \` $u^{n+1/2}$,$v^{n+1/2}$ (\ref{eq:v-n+1-staggered})\\
677    \> THERMODYNAMICS \\
678    \>\> CALC\_GT \\
679    \>\>\> GAD\_CALC\_RHS \` $G_\theta^n = G_\theta( u, \theta^n )$
680         (\ref{eq:Gt-n-staggered})\\
681    \>\>\> EXTERNAL\_FORCING \` $G_\theta^n = G_\theta^n + {\cal Q}$ \\
682    \>\>\> ADAMS\_BASHFORTH2 \` $G_\theta^{(n+1/2)}$ (\ref{eq:Gt-n+5-staggered}) \\
683    \>\> TIMESTEP\_TRACER \` $\theta^*$ (\ref{eq:tstar-staggered}) \\
684    \>\> IMPLDIFF \` $\theta^{(n+1)}$ (\ref{eq:t-n+1-staggered}) \\
685    \> TRACERS\_CORRECTION\_STEP  \\
686    \>\> CYCLE\_TRACER \` $\theta^{n+1}$ \\
687    \>\> FILTER \` Shapiro Filter, Zonal Filter (FFT) \\
688    \>\> CONVECTIVE\_ADJUSTMENT \` \\
689    \end{tabbing} \end{minipage} } \end{center}
690    \caption{
691    Calling tree for the overall staggered algorithm using
692    Adams-Bashforth time-stepping.
693    The place where the model geometry
694    ({\bf hFac} factors) is updated is added here but is only relevant
695    for the non-linear free-surface algorithm.
696    }
697    \label{fig:call-tree-adams-bashforth-staggered}
698    \end{figure}
699    
700    The only difficulty with this approach is apparent in equation
701    \ref{eq:Gt-n-staggered} and illustrated by the dotted arrow
702    connecting $u,v^{n+1/2}$ with $G_\theta^{n}$. The flow used to advect
703    tracers around is not naturally located in time. This could be avoided
704    by applying the Adams-Bashforth extrapolation to the tracer field
705    itself and advecting that around but this approach is not yet
706    available. We're not aware of any detrimental effect of this
707    feature. The difficulty lies mainly in interpretation of what
708    time-level variables and terms correspond to.
709    
710    
711    \section{Non-hydrostatic formulation}
712    \label{sect:non-hydrostatic}
713    \begin{rawhtml}
714    <!-- CMIREDIR:non-hydrostatic_formulation: -->
715    \end{rawhtml}
716    
717    The non-hydrostatic formulation re-introduces the full vertical
718    momentum equation and requires the solution of a 3-D elliptic
719    equations for non-hydrostatic pressure perturbation. We still
720    intergrate vertically for the hydrostatic pressure and solve a 2-D
721    elliptic equation for the surface pressure/elevation for this reduces
722    the amount of work needed to solve for the non-hydrostatic pressure.
723    
724  The staggered baroclinic time-stepping scheme is equations  The momentum equations are discretized in time as follows:
725  \ref{eq-tDsC-theta} to \ref{eq-tDsC-cont} except that \ref{eq-tDsC-hyd} is replaced with:  \begin{eqnarray}
726    \frac{1}{\Delta t} u^{n+1} + g \partial_x \eta^{n+1} + \partial_x \phi_{nh}^{n+1}
727    & = & \frac{1}{\Delta t} u^{n} + G_u^{(n+1/2)} \label{eq:discrete-time-u-nh} \\
728    \frac{1}{\Delta t} v^{n+1} + g \partial_y \eta^{n+1} + \partial_y \phi_{nh}^{n+1}
729    & = & \frac{1}{\Delta t} v^{n} + G_v^{(n+1/2)} \label{eq:discrete-time-v-nh} \\
730    \frac{1}{\Delta t} w^{n+1} + \partial_r \phi_{nh}^{n+1}
731    & = & \frac{1}{\Delta t} w^{n} + G_w^{(n+1/2)} \label{eq:discrete-time-w-nh}
732    \end{eqnarray}
733    which must satisfy the discrete-in-time depth integrated continuity,
734    equation~\ref{eq:discrete-time-backward-free-surface} and the local continuity equation
735  \begin{equation}  \begin{equation}
736  {\phi'_{hyd}}^{n+1/2} = \int_{r'}^{R_o} b'(\theta^{n+1/2},S^{n+1/2},r)  \partial_x u^{n+1} + \partial_y v^{n+1} + \partial_r w^{n+1} = 0
737  dr  \label{eq:non-divergence-nh}
738  \end{equation}  \end{equation}
739  and the time-level for tracers has been shifted back by half:  As before, the explicit predictions for momentum are consolidated as:
740  \begin{eqnarray*}  \begin{eqnarray*}
741  \theta^* & = &  u^* & = & u^n + \Delta t G_u^{(n+1/2)} \\
742  \theta ^{(n-1/2)} + \Delta t G_{\theta} ^{(n)}  v^* & = & v^n + \Delta t G_v^{(n+1/2)} \\
743  \\  w^* & = & w^n + \Delta t G_w^{(n+1/2)}
 S^* & = &  
 S ^{(n-1/2)} + \Delta t G_{S} ^{(n)}  
 \\  
 \left[ 1 - \partial_r \kappa_v^\theta \partial_r \right]  
 \theta^{n+1/2} & = & \theta^*  
 \\  
 \left[ 1 - \partial_r \kappa_v^S \partial_r \right]  
 S^{n+1/2} & = & S^*  
744  \end{eqnarray*}  \end{eqnarray*}
745    but this time we introduce an intermediate step by splitting the
746    tendancy of the flow as follows:
747    \begin{eqnarray}
748    u^{n+1} = u^{**} - \Delta t \partial_x \phi_{nh}^{n+1}
749    & &
750    u^{**} = u^{*} - \Delta t g \partial_x \eta^{n+1} \\
751    v^{n+1} = v^{**} - \Delta t \partial_y \phi_{nh}^{n+1}
752    & &
753    v^{**} = v^{*} - \Delta t g \partial_y \eta^{n+1}
754    \end{eqnarray}
755    Substituting into the depth integrated continuity
756    (equation~\ref{eq:discrete-time-backward-free-surface}) gives
757    \begin{equation}
758    \partial_x H \partial_x \left( g \eta^{n+1} + \widehat{\phi}_{nh}^{n+1} \right)
759    +
760    \partial_y H \partial_y \left( g \eta^{n+1} + \widehat{\phi}_{nh}^{n+1} \right)
761     - \frac{\epsilon_{fs}\eta^*}{\Delta t^2}
762    = - \frac{\eta^*}{\Delta t^2}
763    \end{equation}
764    which is approximated by equation
765    \ref{eq:elliptic-backward-free-surface} on the basis that i)
766    $\phi_{nh}^{n+1}$ is not yet known and ii) $\nabla \widehat{\phi}_{nh}
767    << g \nabla \eta$. If \ref{eq:elliptic-backward-free-surface} is
768    solved accurately then the implication is that $\widehat{\phi}_{nh}
769    \approx 0$ so that thet non-hydrostatic pressure field does not drive
770    barotropic motion.
771    
772    The flow must satisfy non-divergence
773    (equation~\ref{eq:non-divergence-nh}) locally, as well as depth
774    integrated, and this constraint is used to form a 3-D elliptic
775    equations for $\phi_{nh}^{n+1}$:
776    \begin{equation}
777    \partial_{xx} \phi_{nh}^{n+1} + \partial_{yy} \phi_{nh}^{n+1} +
778    \partial_{rr} \phi_{nh}^{n+1} =
779    \partial_x u^{**} + \partial_y v^{**} + \partial_r w^{*}
780    \end{equation}
781    
782    The entire algorithm can be summarized as the sequential solution of
783    the following equations:
784    \begin{eqnarray}
785    u^{*} & = & u^{n} + \Delta t G_u^{(n+1/2)} \label{eq:ustar-nh} \\
786    v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-nh} \\
787    w^{*} & = & w^{n} + \Delta t G_w^{(n+1/2)} \label{eq:wstar-nh} \\
788    \eta^* ~ = ~ \epsilon_{fs} \left( \eta^{n} + \Delta t (P-E) \right)
789    & - & \Delta t
790      \partial_x H \widehat{u^{*}}
791    + \partial_y H \widehat{v^{*}}
792    \\
793      \partial_x g H \partial_x \eta^{n+1}
794    + \partial_y g H \partial_y \eta^{n+1}
795    & - & \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2}
796    ~ = ~
797    - \frac{\eta^*}{\Delta t^2}
798    \label{eq:elliptic-nh}
799    \\
800    u^{**} & = & u^{*} - \Delta t g \partial_x \eta^{n+1} \label{eq:unx-nh}\\
801    v^{**} & = & v^{*} - \Delta t g \partial_y \eta^{n+1} \label{eq:vnx-nh}\\
802    \partial_{xx} \phi_{nh}^{n+1} + \partial_{yy} \phi_{nh}^{n+1} +
803    \partial_{rr} \phi_{nh}^{n+1} & = &
804    \partial_x u^{**} + \partial_y v^{**} + \partial_r w^{*} \\
805    u^{n+1} & = & u^{**} - \Delta t \partial_x \phi_{nh}^{n+1} \label{eq:un+1-nh}\\
806    v^{n+1} & = & v^{**} - \Delta t \partial_y \phi_{nh}^{n+1} \label{eq:vn+1-nh}\\
807    \partial_r w^{n+1} & = & - \partial_x u^{n+1} - \partial_y v^{n+1}
808    \end{eqnarray}
809    where the last equation is solved by vertically integrating for
810    $w^{n+1}$.
811    
812    
 \subsection{Surface pressure}  
813    
814  Substituting \ref{eq-tDsC-Hmom} into \ref{eq-tDsC-cont}, assuming  \section{Variants on the Free Surface}
815  $\epsilon_{nh} = 0$ yields a Helmholtz equation for ${\eta}^{n+1}$:  \label{sect:free-surface}
816    
817    We now describe the various formulations of the free-surface that
818    include non-linear forms, implicit in time using Crank-Nicholson,
819    explicit and [one day] split-explicit. First, we'll reiterate the
820    underlying algorithm but this time using the notation consistent with
821    the more general vertical coordinate $r$. The elliptic equation for
822    free-surface coordinate (units of $r$), corresponding to
823    \ref{eq:discrete-time-backward-free-surface}, and
824    assuming no non-hydrostatic effects ($\epsilon_{nh} = 0$) is:
825  \begin{eqnarray}  \begin{eqnarray}
826  \epsilon_{fs} {\eta}^{n+1} -  \epsilon_{fs} {\eta}^{n+1} -
827  {\bf \nabla}_h \cdot \Delta t^2 (R_o-R_{fixed})  {\bf \nabla}_h \cdot \Delta t^2 (R_o-R_{fixed}) {\bf \nabla}_h b_s
828  {\bf \nabla}_h b_s {\eta}^{n+1}  {\eta}^{n+1} = {\eta}^*
 = {\eta}^*  
829  \label{eq-solve2D}  \label{eq-solve2D}
830  \end{eqnarray}  \end{eqnarray}
831  where  where
832  \begin{eqnarray}  \begin{eqnarray}
833  {\eta}^* = \epsilon_{fs} \: {\eta}^{n} -  {\eta}^* = \epsilon_{fs} \: {\eta}^{n} -
834  \Delta t {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o} \vec{\bf v}^* dr  \Delta t {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o} \vec{\bf v}^* dr
835  \: + \: \epsilon_{fw} \Delta_t (P-E)^{n}  \: + \: \epsilon_{fw} \Delta t (P-E)^{n}
836  \label{eq-solve2D_rhs}  \label{eq-solve2D_rhs}
837  \end{eqnarray}  \end{eqnarray}
838    
839  \fbox{ \begin{minipage}{4.75in}  \fbox{ \begin{minipage}{4.75in}
840  {\em S/R SOLVE\_FOR\_PRESSURE} ({\em solve\_for\_pressure.F})  {\em S/R SOLVE\_FOR\_PRESSURE} ({\em solve\_for\_pressure.F})
841    
842  $u^*$: {\bf GuNm1} ({\em DYNVARS.h})  $u^*$: {\bf gU} ({\em DYNVARS.h})
843    
844  $v^*$: {\bf GvNm1} ({\em DYNVARS.h})  $v^*$: {\bf gV} ({\em DYNVARS.h})
845    
846  $\eta^*$: {\bf cg2d\_b} (\em SOLVE\_FOR\_PRESSURE.h)  $\eta^*$: {\bf cg2d\_b} (\em SOLVE\_FOR\_PRESSURE.h)
847    
# Line 335  $\eta^{n+1}$: {\bf etaN} (\em DYNVARS.h) Line 851  $\eta^{n+1}$: {\bf etaN} (\em DYNVARS.h)
851    
852    
853  Once ${\eta}^{n+1}$ has been found, substituting into  Once ${\eta}^{n+1}$ has been found, substituting into
854  \ref{eq-tDsC-Hmom} yields $\vec{\bf v}^{n+1}$ if the model is  \ref{eq:discrete-time-u}, \ref{eq:discrete-time-v} yields $\vec{\bf v}^{n+1}$
855  hydrostatic ($\epsilon_{nh}=0$):  if the model is hydrostatic ($\epsilon_{nh}=0$):
856  $$  $$
857  \vec{\bf v}^{n+1} = \vec{\bf v}^{*}  \vec{\bf v}^{n+1} = \vec{\bf v}^{*}
858  - \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}  - \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}
# Line 345  $$ Line 861  $$
861  This is known as the correction step. However, when the model is  This is known as the correction step. However, when the model is
862  non-hydrostatic ($\epsilon_{nh}=1$) we need an additional step and an  non-hydrostatic ($\epsilon_{nh}=1$) we need an additional step and an
863  additional equation for $\phi'_{nh}$. This is obtained by substituting  additional equation for $\phi'_{nh}$. This is obtained by substituting
864  \ref{eq-tDsC-Hmom} and \ref{eq-tDsC-Vmom} into  \ref{eq:discrete-time-u-nh}, \ref{eq:discrete-time-v-nh} and \ref{eq:discrete-time-w-nh}
865  \ref{eq-tDsC-cont}:  into continuity:
866  \begin{equation}  \begin{equation}
867  \left[ {\bf \nabla}_h^2 + \partial_{rr} \right] {\phi'_{nh}}^{n+1}  \left[ {\bf \nabla}_h^2 + \partial_{rr} \right] {\phi'_{nh}}^{n+1}
868  = \frac{1}{\Delta t} \left(  = \frac{1}{\Delta t} \left(
# Line 377  without any consequence on the solution. Line 893  without any consequence on the solution.
893    
894  $\eta^{n+1}$: {\bf etaN} (\em DYNVARS.h)  $\eta^{n+1}$: {\bf etaN} (\em DYNVARS.h)
895    
896  $\phi_{nh}^{n+1}$: {\bf phi\_nh} (\em DYNVARS.h)  $\phi_{nh}^{n+1}$: {\bf phi\_nh} (\em NH\_VARS.h)
897    
898  $u^*$: {\bf GuNm1} ({\em DYNVARS.h})  $u^*$: {\bf gU} ({\em DYNVARS.h})
899    
900  $v^*$: {\bf GvNm1} ({\em DYNVARS.h})  $v^*$: {\bf gV} ({\em DYNVARS.h})
901    
902  $u^{n+1}$: {\bf uVel} ({\em DYNVARS.h})  $u^{n+1}$: {\bf uVel} ({\em DYNVARS.h})
903    
# Line 409  at the same point in the code. Line 925  at the same point in the code.
925    
926    
927  \subsection{Crank-Nickelson barotropic time stepping}  \subsection{Crank-Nickelson barotropic time stepping}
928    \label{sect:freesurf-CrankNick}
929    
930  The full implicit time stepping described previously is  The full implicit time stepping described previously is
931  unconditionally stable but damps the fast gravity waves, resulting in  unconditionally stable but damps the fast gravity waves, resulting in
# Line 423  stable, Crank-Nickelson scheme; $(\beta, Line 940  stable, Crank-Nickelson scheme; $(\beta,
940  corresponds to the forward - backward scheme that conserves energy but is  corresponds to the forward - backward scheme that conserves energy but is
941  only stable for small time steps.\\  only stable for small time steps.\\
942  In the code, $\beta,\gamma$ are defined as parameters, respectively  In the code, $\beta,\gamma$ are defined as parameters, respectively
943  {\it implicSurfPress}, {\it implicDiv2DFlow}. They are read from  {\bf implicSurfPress}, {\bf implicDiv2DFlow}. They are read from
944  the main data file "{\it data}" and are set by default to 1,1.  the main parameter file "{\em data}" and are set by default to 1,1.
945    
946  Equations \ref{eq-tDsC-Hmom} and \ref{eq-tDsC-eta} are modified as follows:  Equations \ref{eq:ustar-backward-free-surface} --
947  $$  \ref{eq:vn+1-backward-free-surface} are modified as follows:
948    \begin{eqnarray*}
949  \frac{ \vec{\bf v}^{n+1} }{ \Delta t }  \frac{ \vec{\bf v}^{n+1} }{ \Delta t }
950  + {\bf \nabla}_h b_s [ \beta {\eta}^{n+1} + (1-\beta) {\eta}^{n} ]  + {\bf \nabla}_h b_s [ \beta {\eta}^{n+1} + (1-\beta) {\eta}^{n} ]
951  + \epsilon_{nh} {\bf \nabla}_h {\phi'_{nh}}^{n+1}  + \epsilon_{nh} {\bf \nabla}_h {\phi'_{nh}}^{n+1}
952   = \frac{ \vec{\bf v}^* }{ \Delta t }   = \frac{ \vec{\bf v}^* }{ \Delta t }
953  $$  \end{eqnarray*}
954  $$  \begin{eqnarray}
955  \epsilon_{fs} \frac{ {\eta}^{n+1} - {\eta}^{n} }{ \Delta t}  \epsilon_{fs} \frac{ {\eta}^{n+1} - {\eta}^{n} }{ \Delta t}
956  + {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o}  + {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o}
957  [ \gamma \vec{\bf v}^{n+1} + (1-\gamma) \vec{\bf v}^{n}] dr  [ \gamma \vec{\bf v}^{n+1} + (1-\gamma) \vec{\bf v}^{n}] dr
958  = \epsilon_{fw} (P-E)  = \epsilon_{fw} (P-E)
959  $$  \label{eq:eta-n+1-CrankNick}
960    \end{eqnarray}
961  where:  where:
962  \begin{eqnarray*}  \begin{eqnarray*}
963  \vec{\bf v}^* & = &  \vec{\bf v}^* & = &
# Line 460  $$ Line 979  $$
979  {\bf \nabla}_h {\eta}^{n+1}  {\bf \nabla}_h {\eta}^{n+1}
980  = {\eta}^*  = {\eta}^*
981  $$  $$
982  and then to compute (correction step):  and then to compute ({\em CORRECTION\_STEP}):
983  $$  $$
984  \vec{\bf v}^{n+1} = \vec{\bf v}^{*}  \vec{\bf v}^{n+1} = \vec{\bf v}^{*}
985  - \beta \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}  - \beta \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}
986  $$  $$
987    
988  The non-hydrostatic part is solved as described previously.  %The non-hydrostatic part is solved as described previously.
989    
990  Note that:  \noindent
991    Notes:
992  \begin{enumerate}  \begin{enumerate}
993    \item The RHS term of equation \ref{eq:eta-n+1-CrankNick}
994    corresponds the contribution of fresh water flux (P-E)
995    to the free-surface variations ($\epsilon_{fw}=1$,
996    {\bf useRealFreshWater}{\em=TRUE} in parameter file {\em data}).
997    In order to remain consistent with the tracer equation, specially in
998    the non-linear free-surface formulation, this term is also
999    affected by the Crank-Nickelson time stepping. The RHS reads:
1000    $\epsilon_{fw} ( \gamma (P-E)^{n+1/2} + (1-\gamma) (P-E)^{n-1/2} )$
1001  \item The non-hydrostatic part of the code has not yet been  \item The non-hydrostatic part of the code has not yet been
1002  updated, so that this option cannot be used with $(\beta,\gamma) \neq (1,1)$.  updated, and therefore cannot be used with $(\beta,\gamma) \neq (1,1)$.
1003  \item The stability criteria with Crank-Nickelson time stepping  \item The stability criteria with Crank-Nickelson time stepping
1004  for the pure linear gravity wave problem in cartesian coordinates is:  for the pure linear gravity wave problem in cartesian coordinates is:
1005  \begin{itemize}  \begin{itemize}

Legend:
Removed from v.1.7  
changed lines
  Added in v.1.26

  ViewVC Help
Powered by ViewVC 1.1.22