/[MITgcm]/manual/s_algorithm/text/time_stepping.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/time_stepping.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.7 by adcroft, Fri Sep 28 14:09:56 2001 UTC revision 1.24 by edhill, Tue Jun 27 22:31:23 2006 UTC
# Line 1  Line 1 
1  % $Header$  % $Header$
2  % $Name$  % $Name$
3    
4  The convention used in this section is as follows:  This chapter lays out the numerical schemes that are
5  Time is ``discretized'' using a time step $\Delta t$    employed in the core MITgcm algorithm. Whenever possible
6  and $\Phi^n$ refers to the variable $\Phi$  links are made to actual program code in the MITgcm implementation.
7  at time $t = n \Delta t$ . We use the notation $\Phi^{(n)}$  The chapter begins with a discussion of the temporal discretization
8  when time interpolation is required to estimate the value of $\phi$  used in MITgcm. This discussion is followed by sections that
9  at the time $n \Delta t$.  describe the spatial discretization. The schemes employed for momentum
10    terms are described first, afterwards the schemes that apply to
11  \section{Time integration}  passive and dynamically active tracers are described.
12    
13  The discretization in time of the model equations (cf section I )  \input{part2/notation}
14  does not depend of the discretization in space of each  
15  term and so  this section can be read independently.  \section{Time-stepping}
16    \begin{rawhtml}
17  The continuous form of the model equations is:  <!-- CMIREDIR:time-stepping: -->
18    \end{rawhtml}
19  \begin{eqnarray}  
20  \partial_t \theta & = & G_\theta  The equations of motion integrated by the model involve four
21  \label{eq-tCsC-theta}  prognostic equations for flow, $u$ and $v$, temperature, $\theta$, and
22  \\  salt/moisture, $S$, and three diagnostic equations for vertical flow,
23  \partial_t S & = & G_s  $w$, density/buoyancy, $\rho$/$b$, and pressure/geo-potential,
24  \label{eq-tCsC-salt}  $\phi_{hyd}$. In addition, the surface pressure or height may by
25  \\  described by either a prognostic or diagnostic equation and if
26  b' & = & b'(\theta,S,r)  non-hydrostatics terms are included then a diagnostic equation for
27  \\  non-hydrostatic pressure is also solved. The combination of prognostic
28  \partial_r \phi'_{hyd} & = & -b'  and diagnostic equations requires a model algorithm that can march
29  \label{eq-tCsC-hyd}  forward prognostic variables while satisfying constraints imposed by
30  \\  diagnostic equations.
31  \partial_t \vec{\bf v}  
32  + {\bf \nabla}_h b_s \eta  Since the model comes in several flavors and formulation, it would be
33  + \epsilon_{nh} {\bf \nabla}_h \phi'_{nh}  confusing to present the model algorithm exactly as written into code
34  & = & \vec{\bf G}_{\vec{\bf v}}  along with all the switches and optional terms. Instead, we present
35  - {\bf \nabla}_h \phi'_{hyd}  the algorithm for each of the basic formulations which are:
36  \label{eq-tCsC-Hmom}  \begin{enumerate}
37  \\  \item the semi-implicit pressure method for hydrostatic equations
38  \epsilon_{nh} \frac {\partial{\dot{r}}}{\partial{t}}  with a rigid-lid, variables co-located in time and with
39  + \epsilon_{nh} \partial_r \phi'_{nh}  Adams-Bashforth time-stepping, \label{it:a}
40  & = & \epsilon_{nh} G_{\dot{r}}  \item as \ref{it:a}. but with an implicit linear free-surface, \label{it:b}
41  \label{eq-tCsC-Vmom}  \item as \ref{it:a}. or \ref{it:b}. but with variables staggered in time,
42  \\  \label{it:c}
43  {\bf \nabla}_h \cdot \vec{\bf v} + \partial_r \dot{r}  \item as \ref{it:a}. or \ref{it:b}. but with non-hydrostatic terms included,
44  & = & 0  \item as \ref{it:b}. or \ref{it:c}. but with non-linear free-surface.
45  \label{eq-tCsC-cont}  \end{enumerate}
46    
47    In all the above configurations it is also possible to substitute the
48    Adams-Bashforth with an alternative time-stepping scheme for terms
49    evaluated explicitly in time. Since the over-arching algorithm is
50    independent of the particular time-stepping scheme chosen we will
51    describe first the over-arching algorithm, known as the pressure
52    method, with a rigid-lid model in section
53    \ref{sect:pressure-method-rigid-lid}. This algorithm is essentially
54    unchanged, apart for some coefficients, when the rigid lid assumption
55    is replaced with a linearized implicit free-surface, described in
56    section \ref{sect:pressure-method-linear-backward}. These two flavors
57    of the pressure-method encompass all formulations of the model as it
58    exists today. The integration of explicit in time terms is out-lined
59    in section \ref{sect:adams-bashforth} and put into the context of the
60    overall algorithm in sections \ref{sect:adams-bashforth-sync} and
61    \ref{sect:adams-bashforth-staggered}. Inclusion of non-hydrostatic
62    terms requires applying the pressure method in three dimensions
63    instead of two and this algorithm modification is described in section
64    \ref{sect:non-hydrostatic}. Finally, the free-surface equation may be
65    treated more exactly, including non-linear terms, and this is
66    described in section \ref{sect:nonlinear-freesurface}.
67    
68    
69    \section{Pressure method with rigid-lid}
70    \label{sect:pressure-method-rigid-lid}
71    \begin{rawhtml}
72    <!-- CMIREDIR:pressure_method_rigid_lid: -->
73    \end{rawhtml}
74    
75    \begin{figure}
76    \begin{center}
77    \resizebox{4.0in}{!}{\includegraphics{part2/pressure-method-rigid-lid.eps}}
78    \end{center}
79    \caption{
80    A schematic of the evolution in time of the pressure method
81    algorithm. A prediction for the flow variables at time level $n+1$ is
82    made based only on the explicit terms, $G^{(n+^1/_2)}$, and denoted
83    $u^*$, $v^*$. Next, a pressure field is found such that $u^{n+1}$,
84    $v^{n+1}$ will be non-divergent. Conceptually, the $*$ quantities
85    exist at time level $n+1$ but they are intermediate and only
86    temporary.}
87    \label{fig:pressure-method-rigid-lid}
88    \end{figure}
89    
90    \begin{figure}
91    \begin{center} \fbox{ \begin{minipage}{4.5in} \begin{tabbing}
92    aaa \= aaa \= aaa \= aaa \= aaa \= aaa \kill
93    \filelink{FORWARD\_STEP}{model-src-forward_step.F} \\
94    \> DYNAMICS \\
95    \>\> TIMESTEP \` $u^*$,$v^*$ (\ref{eq:ustar-rigid-lid},\ref{eq:vstar-rigid-lid}) \\
96    \> SOLVE\_FOR\_PRESSURE \\
97    \>\> CALC\_DIV\_GHAT \` $H\widehat{u^*}$,$H\widehat{v^*}$ (\ref{eq:elliptic}) \\
98    \>\> CG2D \` $\eta^{n+1}$ (\ref{eq:elliptic}) \\
99    \> MOMENTUM\_CORRECTION\_STEP  \\
100    \>\> CALC\_GRAD\_PHI\_SURF \` $\nabla \eta^{n+1}$ \\
101    \>\> CORRECTION\_STEP \` $u^{n+1}$,$v^{n+1}$ (\ref{eq:un+1-rigid-lid},\ref{eq:vn+1-rigid-lid})
102    \end{tabbing} \end{minipage} } \end{center}
103    \caption{Calling tree for the pressure method algorithm
104      (\filelink{FORWARD\_STEP}{model-src-forward_step.F})}
105    \label{fig:call-tree-pressure-method}
106    \end{figure}
107    
108    The horizontal momentum and continuity equations for the ocean
109    (\ref{eq:ocean-mom} and \ref{eq:ocean-cont}), or for the atmosphere
110    (\ref{eq:atmos-mom} and \ref{eq:atmos-cont}), can be summarized by:
111    \begin{eqnarray}
112    \partial_t u + g \partial_x \eta & = & G_u \\
113    \partial_t v + g \partial_y \eta & = & G_v \\
114    \partial_x u + \partial_y v + \partial_z w & = & 0
115  \end{eqnarray}  \end{eqnarray}
116  where  where we are adopting the oceanic notation for brevity. All terms in
117  \begin{eqnarray*}  the momentum equations, except for surface pressure gradient, are
118  G_\theta & = &  encapsulated in the $G$ vector. The continuity equation, when
119  - \vec{\bf v} \cdot {\bf \nabla} \theta + {\cal Q}_\theta  integrated over the fluid depth, $H$, and with the rigid-lid/no normal
120  \\  flow boundary conditions applied, becomes:
121  G_S & = &  \begin{equation}
122  - \vec{\bf v} \cdot {\bf \nabla} S + {\cal Q}_S  \partial_x H \widehat{u} + \partial_y H \widehat{v} = 0
123  \\  \label{eq:rigid-lid-continuity}
124  \vec{\bf G}_{\vec{\bf v}}  \end{equation}
125  & = &  Here, $H\widehat{u} = \int_H u dz$ is the depth integral of $u$,
126  - \vec{\bf v} \cdot {\bf \nabla} \vec{\bf v}  similarly for $H\widehat{v}$. The rigid-lid approximation sets $w=0$
127  - f \hat{\bf k} \wedge \vec{\bf v}  at the lid so that it does not move but allows a pressure to be
128  + \vec{\cal F}_{\vec{\bf v}}  exerted on the fluid by the lid. The horizontal momentum equations and
129  \\  vertically integrated continuity equation are be discretized in time
130  G_{\dot{r}}  and space as follows:
131  & = &  \begin{eqnarray}
132  - \vec{\bf v} \cdot {\bf \nabla} \dot{r}  u^{n+1} + \Delta t g \partial_x \eta^{n+1}
133  + {\cal F}_{\dot{r}}  & = & u^{n} + \Delta t G_u^{(n+1/2)}
134  \end{eqnarray*}  \label{eq:discrete-time-u}
135  The exact form of all the ``{\it G}''s terms is described in the next  \\
136  section \ref{sect:discrete}. Here its sufficient to mention that they contains  v^{n+1} + \Delta t g \partial_y \eta^{n+1}
137  all the RHS terms except the pressure/geo-potential terms.  & = & v^{n} + \Delta t G_v^{(n+1/2)}
138    \label{eq:discrete-time-v}
139  The switch $\epsilon_{nh}$ allows one to activate the non-hydrostatic  \\
140  mode ($\epsilon_{nh}=1$) for the ocean model. Otherwise, in the    \partial_x H \widehat{u^{n+1}}
141  hydrostatic limit $\epsilon_{nh} = 0$ and equation \ref{eq-tCsC-Vmom}  + \partial_y H \widehat{v^{n+1}} & = & 0
142  is not used.  \label{eq:discrete-time-cont-rigid-lid}
   
 As discussed in section \ref{sect:1.3.6.2}, the equation for $\eta$ is  
 obtained by integrating the continuity equation over the entire depth  
 of the fluid, from $R_{fixed}(x,y)$ up to $R_o(x,y)$. The linear free  
 surface evolves according to:  
 \begin{eqnarray}  
 \epsilon_{fs} \partial_t \eta =  
 \left. \dot{r} \right|_{r=r_{surf}} + \epsilon_{fw} (P-E) =  
 - {\bf \nabla} \cdot \int_{R_{fixed}}^{R_o} \vec{\bf v} dr  
 + \epsilon_{fw} (P-E)  
 \label{eq-tCsC-eta}  
 \end{eqnarray}  
   
 Here, $\epsilon_{fs}$ is a flag to switch between the free-surface,  
 $\epsilon_{fs}=1$, and a rigid-lid, $\epsilon_{fs}=0$. The flag  
 $\epsilon_{fw}$ determines whether an exchange of fresh water is  
 included at the ocean surface (natural BC) ($\epsilon_{fw} = 1$) or  
 not ($\epsilon_{fw} = 0$).  
   
 The hydrostatic potential is found by integrating (equation  
 \ref{eq-tCsC-hyd}) with the boundary condition that  
 $\phi'_{hyd}(r=R_o) = 0$:  
 \begin{eqnarray*}  
 & &  
 \int_{r'}^{R_o} \partial_r \phi'_{hyd} dr =  
 \left[ \phi'_{hyd} \right]_{r'}^{R_o} =  
 \int_{r'}^{R_o} - b' dr  
 \\  
 \Rightarrow & &  
 \phi'_{hyd}(x,y,r') = \int_{r'}^{R_o} b' dr  
 \end{eqnarray*}  
   
 \subsection{General method}  
   
 An overview of the general method is now presented with explicit  
 references to the Fortran code. We often refer to the discretized  
 equations of the model that are detailed in the following sections.  
   
 The general algorithm consist of a ``predictor step'' that computes  
 the forward tendencies ("G" terms") comprising of explicit-in-time  
 terms and the ``first guess'' values (star notation): $\theta^*, S^*,  
 \vec{\bf v}^*$ (and $\dot{r}^*$ in non-hydrostatic mode). This is done  
 in the two routines {\it THERMODYNAMICS} and {\it DYNAMICS}.  
   
 Terms that are integrated implicitly in time are handled at the end of  
 the {\it THERMODYNAMICS} and {\it DYNAMICS} routines. Then the  
 surface pressure and non hydrostatic pressure are solved for in ({\it  
 SOLVE\_FOR\_PRESSURE}).  
   
 Finally, in the ``corrector step'', (routine {\it  
 THE\_CORRECTION\_STEP}) the new values of $u,v,w,\theta,S$ are  
 determined (see details in \ref{sect:II.1.3}).  
   
 At this point, the regular time stepping process is complete. However,  
 after the correction step there are optional adjustments such as  
 convective adjustment or filters (zonal FFT filter, shapiro filter)  
 that can be applied on both momentum and tracer fields, just prior to  
 incrementing the time level to $n+1$.  
   
 Since the pressure solver precision is of the order of the ``target  
 residual'' and can be lower than the the computer truncation error,  
 and also because some filters might alter the divergence part of the  
 flow field, a final evaluation of the surface r anomaly $\eta^{n+1}$  
 is performed in {\it CALC\_EXACT\_ETA}. This ensures exact volume  
 conservation. Note that there is no need for an equivalent  
 non-hydrostatic ``exact conservation'' step, since by default $w$ is  
 already computed after the filters are applied.  
   
 Optional forcing terms (usually part of a physics ``package''), that  
 account for a specific source or sink process (e.g. condensation as a  
 sink of water vapor Q) are generally incorporated in the main  
 algorithm as follows: at the the beginning of the time step, the  
 additional tendencies are computed as a function of the present state  
 (time step $n$) and external forcing; then within the main part of  
 model, only those new tendencies are added to the model variables.  
   
 [more details needed]\\  
   
 The atmospheric physics follows this general scheme.  
   
 [more about C\_grid, A\_grid conversion \& drag term]\\  
   
   
   
 \subsection{Standard synchronous time stepping}  
   
 In the standard formulation, the surface pressure is evaluated at time  
 step n+1 (an implicit method).  Equations \ref{eq-tCsC-theta} to  
 \ref{eq-tCsC-cont} are then discretized in time as follows:  
 \begin{eqnarray}  
 \left[ 1 - \partial_r \kappa_v^\theta \partial_r \right]  
 \theta^{n+1} & = & \theta^*  
 \label{eq-tDsC-theta}  
 \\  
 \left[ 1 - \partial_r \kappa_v^S \partial_r \right]  
 S^{n+1} & = & S^*  
 \label{eq-tDsC-salt}  
 \\  
 %{b'}^{n} & = & b'(\theta^{n},S^{n},r)  
 %\partial_r {\phi'_{hyd}}^{n} & = & {-b'}^{n}  
 %\\  
 {\phi'_{hyd}}^{n} & = & \int_{r'}^{R_o} b'(\theta^{n},S^{n},r) dr  
 \label{eq-tDsC-hyd}  
 \\  
 \vec{\bf v} ^{n+1}  
 + \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}  
 + \epsilon_{nh} \Delta t {\bf \nabla} {\phi'_{nh}}^{n+1}  
 - \partial_r A_v \partial_r \vec{\bf v}^{n+1}  
 & = &  
 \vec{\bf v}^*  
 \label{eq-tDsC-Hmom}  
 \\  
 \epsilon_{fs} {\eta}^{n+1} + \Delta t  
 {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o} \vec{\bf v}^{n+1} dr  
 & = &  
     \epsilon_{fs} {\eta}^{n} + \epsilon_{fw} \Delta_t (P-E)^{n}  
 \nonumber  
 \\  
 % = \epsilon_{fs} {\eta}^{n} & + & \epsilon_{fw} \Delta_t (P-E)^{n}  
 \label{eq-tDsC-eta}  
 \\  
 \epsilon_{nh} \left( \dot{r} ^{n+1}  
 + \Delta t \partial_r {\phi'_{nh}} ^{n+1}  
 \right)  
 & = & \epsilon_{nh} \dot{r}^*  
 \label{eq-tDsC-Vmom}  
 \\  
 {\bf \nabla}_h \cdot \vec{\bf v}^{n+1} + \partial_r \dot{r}^{n+1}  
 & = & 0  
 \label{eq-tDsC-cont}  
143  \end{eqnarray}  \end{eqnarray}
144  where  As written here, terms on the LHS all involve time level $n+1$ and are
145    referred to as implicit; the implicit backward time stepping scheme is
146    being used. All other terms in the RHS are explicit in time. The
147    thermodynamic quantities are integrated forward in time in parallel
148    with the flow and will be discussed later. For the purposes of
149    describing the pressure method it suffices to say that the hydrostatic
150    pressure gradient is explicit and so can be included in the vector
151    $G$.
152    
153    Substituting the two momentum equations into the depth integrated
154    continuity equation eliminates $u^{n+1}$ and $v^{n+1}$ yielding an
155    elliptic equation for $\eta^{n+1}$. Equations
156    \ref{eq:discrete-time-u}, \ref{eq:discrete-time-v} and
157    \ref{eq:discrete-time-cont-rigid-lid} can then be re-arranged as follows:
158  \begin{eqnarray}  \begin{eqnarray}
159  \theta^* & = &  u^{*} & = & u^{n} + \Delta t G_u^{(n+1/2)} \label{eq:ustar-rigid-lid} \\
160  \theta ^{n} + \Delta t G_{\theta} ^{(n+1/2)}  v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-rigid-lid} \\
161  \\    \partial_x \Delta t g H \partial_x \eta^{n+1}
162  S^* & = &  + \partial_y \Delta t g H \partial_y \eta^{n+1}
163  S ^{n} + \Delta t G_{S} ^{(n+1/2)}  & = &
164  \\    \partial_x H \widehat{u^{*}}
165  \vec{\bf v}^* & = &  + \partial_y H \widehat{v^{*}} \label{eq:elliptic}
 \vec{\bf v}^{n} + \Delta t \vec{\bf G}_{\vec{\bf v}} ^{(n+1/2)}  
 + \Delta t  {\bf \nabla}_h {\phi'_{hyd}}^{(n+1/2)}  
166  \\  \\
167  \dot{r}^* & = &  u^{n+1} & = & u^{*} - \Delta t g \partial_x \eta^{n+1} \label{eq:un+1-rigid-lid}\\
168  \dot{r} ^{n} + \Delta t G_{\dot{r}} ^{(n+1/2)}  v^{n+1} & = & v^{*} - \Delta t g \partial_y \eta^{n+1} \label{eq:vn+1-rigid-lid}
169  \end{eqnarray}  \end{eqnarray}
170    Equations \ref{eq:ustar-rigid-lid} to \ref{eq:vn+1-rigid-lid}, solved
171    sequentially, represent the pressure method algorithm used in the
172    model. The essence of the pressure method lies in the fact that any
173    explicit prediction for the flow would lead to a divergence flow field
174    so a pressure field must be found that keeps the flow non-divergent
175    over each step of the integration. The particular location in time of
176    the pressure field is somewhat ambiguous; in
177    Fig.~\ref{fig:pressure-method-rigid-lid} we depicted as co-located
178    with the future flow field (time level $n+1$) but it could equally
179    have been drawn as staggered in time with the flow.
180    
181  Note that implicit vertical viscosity and diffusivity terms are not  The correspondence to the code is as follows:
182  considered as part of the ``{\it G}'' terms, but are written  \begin{itemize}
183  separately here.  \item
184    the prognostic phase, equations \ref{eq:ustar-rigid-lid} and \ref{eq:vstar-rigid-lid},
185  The default time-stepping method is the Adams-Bashforth quasi-second  stepping forward $u^n$ and $v^n$ to $u^{*}$ and $v^{*}$ is coded in
186  order scheme in which the ``G'' terms are extrapolated forward in time  \filelink{TIMESTEP()}{model-src-timestep.F}
187  from time-levels $n-1$ and $n$ to time-level $n+1/2$ and provides a  \item
188  simple but stable algorithm:  the vertical integration, $H \widehat{u^*}$ and $H
189  \begin{equation}  \widehat{v^*}$, divergence and inversion of the elliptic operator in
190  G^{(n+1/2)} = G^n + (1/2+\epsilon_{AB}) (G^n - G^{n-1})  equation \ref{eq:elliptic} is coded in
191  \end{equation}  \filelink{SOLVE\_FOR\_PRESSURE()}{model-src-solve_for_pressure.F}
192  where $\epsilon_{AB}$ is a small number used to stabilize the time  \item
193  stepping.  finally, the new flow field at time level $n+1$ given by equations
194    \ref{eq:un+1-rigid-lid} and \ref{eq:vn+1-rigid-lid} is calculated in
195  In the standard non-staggered formulation, the Adams-Bashforth time  \filelink{CORRECTION\_STEP()}{model-src-correction_step.F}.
196  stepping is also applied to the hydrostatic pressure/geo-potential  \end{itemize}
197  gradient, $\nabla_h \Phi'_{hyd}$.  Note that presently, this term is in  The calling tree for these routines is given in
198  fact incorporated to the $\vec{\bf G}_{\vec{\bf v}}$ arrays ({\bf  Fig.~\ref{fig:call-tree-pressure-method}.
 gU,gV}).  
 \marginpar{JMC: Clarify ``this term''?}  
   
 \fbox{ \begin{minipage}{4.75in}  
 {\em S/R TIMESTEP} ({\em timestep.F})  
   
 $G_u^n$: {\bf Gu} ({\em DYNVARS.h})  
   
 $G_u^{n-1}, u^*$: {\bf GuNm1} ({\em DYNVARS.h})  
   
 $G_v^n$: {\bf Gv} ({\em DYNVARS.h})  
   
 $G_v^{n-1}, v^*$: {\bf GvNm1} ({\em DYNVARS.h})  
   
 $G_u^{(n+1/2)}$: {\bf GuTmp} (local)  
   
 $G_v^{(n+1/2)}$: {\bf GvTmp} (local)  
199    
 \end{minipage} }  
200    
201    
202    \paragraph{Need to discuss implicit viscosity somewhere:}
203    \begin{eqnarray}
204    \frac{1}{\Delta t} u^{n+1} - \partial_z A_v \partial_z u^{n+1}
205    + g \partial_x \eta^{n+1} & = & \frac{1}{\Delta t} u^{n} +
206    G_u^{(n+1/2)}
207    \\
208    \frac{1}{\Delta t} v^{n+1} - \partial_z A_v \partial_z v^{n+1}
209    + g \partial_y \eta^{n+1} & = & \frac{1}{\Delta t} v^{n} + G_v^{(n+1/2)}
210    \end{eqnarray}
211    
212    
213    \section{Pressure method with implicit linear free-surface}
214    \label{sect:pressure-method-linear-backward}
215    \begin{rawhtml}
216    <!-- CMIREDIR:pressure_method_linear_backward: -->
217    \end{rawhtml}
218    
219    The rigid-lid approximation filters out external gravity waves
220    subsequently modifying the dispersion relation of barotropic Rossby
221    waves. The discrete form of the elliptic equation has some zero
222    eigen-values which makes it a potentially tricky or inefficient
223    problem to solve.
224    
225  \subsection{Stagger baroclinic time stepping}  The rigid-lid approximation can be easily replaced by a linearization
226    of the free-surface equation which can be written:
227    \begin{equation}
228    \partial_t \eta + \partial_x H \widehat{u} + \partial_y H \widehat{v} = P-E+R
229    \label{eq:linear-free-surface=P-E}
230    \end{equation}
231    which differs from the depth integrated continuity equation with
232    rigid-lid (\ref{eq:rigid-lid-continuity}) by the time-dependent term
233    and fresh-water source term.
234    
235    Equation \ref{eq:discrete-time-cont-rigid-lid} in the rigid-lid
236    pressure method is then replaced by the time discretization of
237    \ref{eq:linear-free-surface=P-E} which is:
238    \begin{equation}
239    \eta^{n+1}
240    + \Delta t \partial_x H \widehat{u^{n+1}}
241    + \Delta t \partial_y H \widehat{v^{n+1}}
242    =
243    \eta^{n}
244    + \Delta t ( P - E )
245    \label{eq:discrete-time-backward-free-surface}
246    \end{equation}
247    where the use of flow at time level $n+1$ makes the method implicit
248    and backward in time. The is the preferred scheme since it still
249    filters the fast unresolved wave motions by damping them. A centered
250    scheme, such as Crank-Nicholson, would alias the energy of the fast
251    modes onto slower modes of motion.
252    
253    As for the rigid-lid pressure method, equations
254    \ref{eq:discrete-time-u}, \ref{eq:discrete-time-v} and
255    \ref{eq:discrete-time-backward-free-surface} can be re-arranged as follows:
256    \begin{eqnarray}
257    u^{*} & = & u^{n} + \Delta t G_u^{(n+1/2)} \label{eq:ustar-backward-free-surface} \\
258    v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-backward-free-surface} \\
259    \eta^* & = & \epsilon_{fs} \left( \eta^{n} + \Delta t (P-E) \right)- \Delta t
260      \partial_x H \widehat{u^{*}}
261    + \partial_y H \widehat{v^{*}}
262    \\
263      \partial_x g H \partial_x \eta^{n+1}
264    & + & \partial_y g H \partial_y \eta^{n+1}
265     - \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2}
266     =
267    - \frac{\eta^*}{\Delta t^2}
268    \label{eq:elliptic-backward-free-surface}
269    \\
270    u^{n+1} & = & u^{*} - \Delta t g \partial_x \eta^{n+1} \label{eq:un+1-backward-free-surface}\\
271    v^{n+1} & = & v^{*} - \Delta t g \partial_y \eta^{n+1} \label{eq:vn+1-backward-free-surface}
272    \end{eqnarray}
273    Equations~\ref{eq:ustar-backward-free-surface}
274    to~\ref{eq:vn+1-backward-free-surface}, solved sequentially, represent
275    the pressure method algorithm with a backward implicit, linearized
276    free surface. The method is still formerly a pressure method because
277    in the limit of large $\Delta t$ the rigid-lid method is
278    recovered. However, the implicit treatment of the free-surface allows
279    the flow to be divergent and for the surface pressure/elevation to
280    respond on a finite time-scale (as opposed to instantly). To recover
281    the rigid-lid formulation, we introduced a switch-like parameter,
282    $\epsilon_{fs}$, which selects between the free-surface and rigid-lid;
283    $\epsilon_{fs}=1$ allows the free-surface to evolve; $\epsilon_{fs}=0$
284    imposes the rigid-lid. The evolution in time and location of variables
285    is exactly as it was for the rigid-lid model so that
286    Fig.~\ref{fig:pressure-method-rigid-lid} is still
287    applicable. Similarly, the calling sequence, given in
288    Fig.~\ref{fig:call-tree-pressure-method}, is as for the
289    pressure-method.
290    
291    
292    \section{Explicit time-stepping: Adams-Bashforth}
293    \label{sect:adams-bashforth}
294    \begin{rawhtml}
295    <!-- CMIREDIR:adams_bashforth: -->
296    \end{rawhtml}
297    
298    In describing the the pressure method above we deferred describing the
299    time discretization of the explicit terms. We have historically used
300    the quasi-second order Adams-Bashforth method for all explicit terms
301    in both the momentum and tracer equations. This is still the default
302    mode of operation but it is now possible to use alternate schemes for
303    tracers (see section \ref{sect:tracer-advection}).
304    
305    \begin{figure}
306    \begin{center} \fbox{ \begin{minipage}{4.5in} \begin{tabbing}
307    aaa \= aaa \= aaa \= aaa \= aaa \= aaa \kill
308    FORWARD\_STEP \\
309    \> THERMODYNAMICS \\
310    \>\> CALC\_GT \\
311    \>\>\> GAD\_CALC\_RHS \` $G_\theta^n = G_\theta( u, \theta^n )$ \\
312    \>either\>\> EXTERNAL\_FORCING \` $G_\theta^n = G_\theta^n + {\cal Q}$ \\
313    \>\>\> ADAMS\_BASHFORTH2 \` $G_\theta^{(n+1/2)}$ (\ref{eq:adams-bashforth2}) \\
314    \>or\>\> EXTERNAL\_FORCING \` $G_\theta^{(n+1/2)} = G_\theta^{(n+1/2)} + {\cal Q}$ \\
315    \>\> TIMESTEP\_TRACER \` $\tau^*$ (\ref{eq:taustar}) \\
316    \>\> IMPLDIFF \` $\tau^{(n+1)}$ (\ref{eq:tau-n+1-implicit})
317    \end{tabbing} \end{minipage} } \end{center}
318    \caption{
319    Calling tree for the Adams-Bashforth time-stepping of temperature with
320    implicit diffusion.}
321    \label{fig:call-tree-adams-bashforth}
322    \end{figure}
323    
324  An alternative to synchronous time-stepping is to stagger the momentum  In the previous sections, we summarized an explicit scheme as:
325  and tracer fields in time. This allows the evaluation and gradient of  \begin{equation}
326  $\phi'_{hyd}$ to be centered in time with out needing to use the  \tau^{*} = \tau^{n} + \Delta t G_\tau^{(n+1/2)}
327  Adams-Bashforth extrapoltion. This option is known as staggered  \label{eq:taustar}
328  baroclinic time stepping because tracer and momentum are stepped  \end{equation}
329  forward-in-time one after the other.  It can be activated by turning  where $\tau$ could be any prognostic variable ($u$, $v$, $\theta$ or
330  on a run-time parameter {\bf staggerTimeStep} in namelist ``{\it  $S$) and $\tau^*$ is an explicit estimate of $\tau^{n+1}$ and would be
331  PARM01}''.  exact if not for implicit-in-time terms. The parenthesis about $n+1/2$
332    indicates that the term is explicit and extrapolated forward in time
333  The main advantage of staggered time-stepping compared to synchronous,  and for this we use the quasi-second order Adams-Bashforth method:
334  is improved stability to internal gravity wave motions and a very  \begin{equation}
335  natural implementation of a 2nd order in time hydrostatic  G_\tau^{(n+1/2)} = ( 3/2 + \epsilon_{AB}) G_\tau^n
336  pressure/geo-potential gradient term. However, synchronous  - ( 1/2 + \epsilon_{AB}) G_\tau^{n-1}
337  time-stepping might be better for convection problems, time dependent  \label{eq:adams-bashforth2}
338  forcing and diagnosing the model are also easier and it allows a more  \end{equation}
339  efficient parallel decomposition.  This is a linear extrapolation, forward in time, to
340    $t=(n+1/2+{\epsilon_{AB}})\Delta t$. An extrapolation to the mid-point
341    in time, $t=(n+1/2)\Delta t$, corresponding to $\epsilon_{AB}=0$,
342    would be second order accurate but is weakly unstable for oscillatory
343    terms. A small but finite value for $\epsilon_{AB}$ stabilizes the
344    method. Strictly speaking, damping terms such as diffusion and
345    dissipation, and fixed terms (forcing), do not need to be inside the
346    Adams-Bashforth extrapolation. However, in the current code, it is
347    simpler to include these terms and this can be justified if the flow
348    and forcing evolves smoothly. Problems can, and do, arise when forcing
349    or motions are high frequency and this corresponds to a reduced
350    stability compared to a simple forward time-stepping of such terms.
351    The model offers the possibility to leave the forcing term outside the
352    Adams-Bashforth extrapolation, by turning off the logical flag
353    {\bf forcing\_In\_AB } (parameter file {\em data}, namelist {\em PARM01},
354    default value = True).
355    
356    A stability analysis for an oscillation equation should be given at this point.
357    \marginpar{AJA needs to find his notes on this...}
358    
359    A stability analysis for a relaxation equation should be given at this point.
360    \marginpar{...and for this too.}
361    
362    
363    \section{Implicit time-stepping: backward method}
364    \begin{rawhtml}
365    <!-- CMIREDIR:implicit_time-stepping_backward: -->
366    \end{rawhtml}
367    
368    Vertical diffusion and viscosity can be treated implicitly in time
369    using the backward method which is an intrinsic scheme.
370    Recently, the option to treat the vertical advection
371    implicitly has been added, but not yet tested; therefore,
372    the description hereafter is limited to diffusion and viscosity.
373    For tracers,
374    the time discretized equation is:
375    \begin{equation}
376    \tau^{n+1} - \Delta t \partial_r \kappa_v \partial_r \tau^{n+1} =
377    \tau^{n} + \Delta t G_\tau^{(n+1/2)}
378    \label{eq:implicit-diffusion}
379    \end{equation}
380    where $G_\tau^{(n+1/2)}$ is the remaining explicit terms extrapolated
381    using the Adams-Bashforth method as described above.  Equation
382    \ref{eq:implicit-diffusion} can be split split into:
383    \begin{eqnarray}
384    \tau^* & = & \tau^{n} + \Delta t G_\tau^{(n+1/2)}
385    \label{eq:taustar-implicit} \\
386    \tau^{n+1} & = & {\cal L}_\tau^{-1} ( \tau^* )
387    \label{eq:tau-n+1-implicit}
388    \end{eqnarray}
389    where ${\cal L}_\tau^{-1}$ is the inverse of the operator
390    \begin{equation}
391    {\cal L} = \left[ 1 + \Delta t \partial_r \kappa_v \partial_r \right]
392    \end{equation}
393    Equation \ref{eq:taustar-implicit} looks exactly as \ref{eq:taustar}
394    while \ref{eq:tau-n+1-implicit} involves an operator or matrix
395    inversion. By re-arranging \ref{eq:implicit-diffusion} in this way we
396    have cast the method as an explicit prediction step and an implicit
397    step allowing the latter to be inserted into the over all algorithm
398    with minimal interference.
399    
400    Fig.~\ref{fig:call-tree-adams-bashforth} shows the calling sequence for
401    stepping forward a tracer variable such as temperature.
402    
403    In order to fit within the pressure method, the implicit viscosity
404    must not alter the barotropic flow. In other words, it can only
405    redistribute momentum in the vertical. The upshot of this is that
406    although vertical viscosity may be backward implicit and
407    unconditionally stable, no-slip boundary conditions may not be made
408    implicit and are thus cast as a an explicit drag term.
409    
410    \section{Synchronous time-stepping: variables co-located in time}
411    \label{sect:adams-bashforth-sync}
412    \begin{rawhtml}
413    <!-- CMIREDIR:adams_bashforth_sync: -->
414    \end{rawhtml}
415    
416    \begin{figure}
417    \begin{center}
418    \resizebox{5.0in}{!}{\includegraphics{part2/adams-bashforth-sync.eps}}
419    \end{center}
420    \caption{
421    A schematic of the explicit Adams-Bashforth and implicit time-stepping
422    phases of the algorithm. All prognostic variables are co-located in
423    time. Explicit tendencies are evaluated at time level $n$ as a
424    function of the state at that time level (dotted arrow). The explicit
425    tendency from the previous time level, $n-1$, is used to extrapolate
426    tendencies to $n+1/2$ (dashed arrow). This extrapolated tendency
427    allows variables to be stably integrated forward-in-time to render an
428    estimate ($*$-variables) at the $n+1$ time level (solid
429    arc-arrow). The operator ${\cal L}$ formed from implicit-in-time terms
430    is solved to yield the state variables at time level $n+1$. }
431    \label{fig:adams-bashforth-sync}
432    \end{figure}
433    
434    \begin{figure}
435    \begin{center} \fbox{ \begin{minipage}{4.7in} \begin{tabbing}
436    aaa \= aaa \= aaa \= aaa \= aaa \= aaa \kill
437    FORWARD\_STEP \\
438    \>\> EXTERNAL\_FIELDS\_LOAD\\
439    \>\> DO\_ATMOSPHERIC\_PHYS \\
440    \>\> DO\_OCEANIC\_PHYS \\
441    \> THERMODYNAMICS \\
442    \>\> CALC\_GT \\
443    \>\>\> GAD\_CALC\_RHS \` $G_\theta^n = G_\theta( u, \theta^n )$ (\ref{eq:Gt-n-sync})\\
444    \>\>\> EXTERNAL\_FORCING \` $G_\theta^n = G_\theta^n + {\cal Q}$ \\
445    \>\>\> ADAMS\_BASHFORTH2 \` $G_\theta^{(n+1/2)}$ (\ref{eq:Gt-n+5-sync}) \\
446    \>\> TIMESTEP\_TRACER \` $\theta^*$ (\ref{eq:tstar-sync}) \\
447    \>\> IMPLDIFF \` $\theta^{(n+1)}$ (\ref{eq:t-n+1-sync}) \\
448    \> DYNAMICS \\
449    \>\> CALC\_PHI\_HYD \` $\phi_{hyd}^n$ (\ref{eq:phi-hyd-sync}) \\
450    \>\> MOM\_FLUXFORM or MOM\_VECINV \` $G_{\vec{\bf v}}^n$ (\ref{eq:Gv-n-sync})\\
451    \>\> TIMESTEP \` $\vec{\bf v}^*$ (\ref{eq:Gv-n+5-sync}, \ref{eq:vstar-sync}) \\
452    \>\> IMPLDIFF \` $\vec{\bf v}^{**}$ (\ref{eq:vstarstar-sync}) \\
453    \> UPDATE\_R\_STAR or UPDATE\_SURF\_DR \` (NonLin-FS only)\\
454    \> SOLVE\_FOR\_PRESSURE \\
455    \>\> CALC\_DIV\_GHAT \` $\eta^*$ (\ref{eq:nstar-sync}) \\
456    \>\> CG2D \` $\eta^{n+1}$ (\ref{eq:elliptic-sync}) \\
457    \> MOMENTUM\_CORRECTION\_STEP  \\
458    \>\> CALC\_GRAD\_PHI\_SURF \` $\nabla \eta^{n+1}$ \\
459    \>\> CORRECTION\_STEP \` $u^{n+1}$,$v^{n+1}$ (\ref{eq:v-n+1-sync})\\
460    \> TRACERS\_CORRECTION\_STEP  \\
461    \>\> CYCLE\_TRACER \` $\theta^{n+1}$ \\
462    \>\> FILTER \` Shapiro Filter, Zonal Filter (FFT) \\
463    \>\> CONVECTIVE\_ADJUSTMENT \` \\
464    \end{tabbing} \end{minipage} } \end{center}
465    \caption{
466    Calling tree for the overall synchronous algorithm using
467    Adams-Bashforth time-stepping.
468    The place where the model geometry
469    ({\bf hFac} factors) is updated is added here but is only relevant
470    for the non-linear free-surface algorithm.
471    For completeness, the external forcing,
472    ocean and atmospheric physics have been added, although they are mainly
473    optional}
474    \label{fig:call-tree-adams-bashforth-sync}
475    \end{figure}
476    
477    The Adams-Bashforth extrapolation of explicit tendencies fits neatly
478    into the pressure method algorithm when all state variables are
479    co-located in time. Fig.~\ref{fig:adams-bashforth-sync} illustrates
480    the location of variables in time and the evolution of the algorithm
481    with time. The algorithm can be represented by the sequential solution
482    of the follow equations:
483    \begin{eqnarray}
484    G_{\theta,S}^{n} & = & G_{\theta,S} ( u^n, \theta^n, S^n )
485    \label{eq:Gt-n-sync} \\
486    G_{\theta,S}^{(n+1/2)} & = & (3/2+\epsilon_{AB}) G_{\theta,S}^{n}-(1/2+\epsilon_{AB}) G_{\theta,S}^{n-1}
487    \label{eq:Gt-n+5-sync} \\
488    (\theta^*,S^*) & = & (\theta^{n},S^{n}) + \Delta t G_{\theta,S}^{(n+1/2)}
489    \label{eq:tstar-sync} \\
490    (\theta^{n+1},S^{n+1}) & = & {\cal L}^{-1}_{\theta,S} (\theta^*,S^*)
491    \label{eq:t-n+1-sync} \\
492    \phi^n_{hyd} & = & \int b(\theta^n,S^n) dr
493    \label{eq:phi-hyd-sync} \\
494    \vec{\bf G}_{\vec{\bf v}}^{n} & = & \vec{\bf G}_{\vec{\bf v}} ( \vec{\bf v}^n, \phi^n_{hyd} )
495    \label{eq:Gv-n-sync} \\
496    \vec{\bf G}_{\vec{\bf v}}^{(n+1/2)} & = & (3/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n} - (1/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n-1}
497    \label{eq:Gv-n+5-sync} \\
498    \vec{\bf v}^{*} & = & \vec{\bf v}^{n} + \Delta t \vec{\bf G}_{\vec{\bf v}}^{(n+1/2)}
499    \label{eq:vstar-sync} \\
500    \vec{\bf v}^{**} & = & {\cal L}_{\vec{\bf v}}^{-1} ( \vec{\bf v}^* )
501    \label{eq:vstarstar-sync} \\
502    \eta^* & = & \epsilon_{fs} \left( \eta^{n} + \Delta t (P-E) \right)- \Delta t
503      \nabla \cdot H \widehat{ \vec{\bf v}^{**} }
504    \label{eq:nstar-sync} \\
505    \nabla \cdot g H \nabla \eta^{n+1} & - & \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2}
506    ~ = ~ - \frac{\eta^*}{\Delta t^2}
507    \label{eq:elliptic-sync} \\
508    \vec{\bf v}^{n+1} & = & \vec{\bf v}^{*} - \Delta t g \nabla \eta^{n+1}
509    \label{eq:v-n+1-sync}
510    \end{eqnarray}
511    Fig.~\ref{fig:adams-bashforth-sync} illustrates the location of
512    variables in time and evolution of the algorithm with time. The
513    Adams-Bashforth extrapolation of the tracer tendencies is illustrated
514    by the dashed arrow, the prediction at $n+1$ is indicated by the
515    solid arc. Inversion of the implicit terms, ${\cal
516    L}^{-1}_{\theta,S}$, then yields the new tracer fields at $n+1$. All
517    these operations are carried out in subroutine {\em THERMODYNAMICS} an
518    subsidiaries, which correspond to equations \ref{eq:Gt-n-sync} to
519    \ref{eq:t-n+1-sync}.
520    Similarly illustrated is the Adams-Bashforth extrapolation of
521    accelerations, stepping forward and solving of implicit viscosity and
522    surface pressure gradient terms, corresponding to equations
523    \ref{eq:Gv-n-sync} to \ref{eq:v-n+1-sync}.
524    These operations are carried out in subroutines {\em DYNAMCIS}, {\em
525    SOLVE\_FOR\_PRESSURE} and {\em MOMENTUM\_CORRECTION\_STEP}. This, then,
526    represents an entire algorithm for stepping forward the model one
527    time-step. The corresponding calling tree is given in
528    \ref{fig:call-tree-adams-bashforth-sync}.
529    
530    \section{Staggered baroclinic time-stepping}
531    \label{sect:adams-bashforth-staggered}
532    \begin{rawhtml}
533    <!-- CMIREDIR:adams_bashforth_staggered: -->
534    \end{rawhtml}
535    
536    \begin{figure}
537    \begin{center}
538    \resizebox{5.5in}{!}{\includegraphics{part2/adams-bashforth-staggered.eps}}
539    \end{center}
540    \caption{
541    A schematic of the explicit Adams-Bashforth and implicit time-stepping
542    phases of the algorithm but with staggering in time of thermodynamic
543    variables with the flow.
544    Explicit momentum tendencies are evaluated at time level $n-1/2$ as a
545    function of the flow field at that time level $n-1/2$.
546    The explicit tendency from the previous time level, $n-3/2$, is used to
547    extrapolate tendencies to $n$ (dashed arrow).
548    The hydrostatic pressure/geo-potential $\phi_{hyd}$ is evaluated directly
549    at time level $n$ (vertical arrows) and used with the extrapolated tendencies
550    to step forward the flow variables from $n-1/2$ to $n+1/2$ (solid arc-arrow).
551    The implicit-in-time operator ${\cal L}_{\bf u,v}$ (vertical arrows) is
552    then applied to the previous estimation of the the flow field ($*$-variables)
553    and yields to the two velocity components $u,v$ at time level $n+1/2$.
554    These are then used to calculate the advection term (dashed arc-arrow)
555    of the thermo-dynamics tendencies at time step $n$.
556    The extrapolated thermodynamics tendency, from time level $n-1$ and $n$
557    to $n+1/2$, allows thermodynamic variables to be stably integrated
558    forward-in-time (solid arc-arrow) up to time level $n+1$.
559    }
560    \label{fig:adams-bashforth-staggered}
561    \end{figure}
562    
563    For well stratified problems, internal gravity waves may be the
564    limiting process for determining a stable time-step. In the
565    circumstance, it is more efficient to stagger in time the
566    thermodynamic variables with the flow
567    variables. Fig.~\ref{fig:adams-bashforth-staggered} illustrates the
568    staggering and algorithm. The key difference between this and
569    Fig.~\ref{fig:adams-bashforth-sync} is that the thermodynamic variables
570    are solved after the dynamics, using the recently updated flow field.
571    This essentially allows the gravity wave terms to leap-frog in
572    time giving second order accuracy and more stability.
573    
574    The essential change in the staggered algorithm is that the
575    thermodynamics solver is delayed from half a time step,
576    allowing the use of the most recent velocities to compute
577    the advection terms. Once the thermodynamics fields are
578    updated, the hydrostatic pressure is computed
579    to step forwrad the dynamics.
580    Note that the pressure gradient must also be taken out of the
581    Adams-Bashforth extrapolation. Also, retaining the integer time-levels,
582    $n$ and $n+1$, does not give a user the sense of where variables are
583    located in time.  Instead, we re-write the entire algorithm,
584    \ref{eq:Gt-n-sync} to \ref{eq:v-n+1-sync}, annotating the
585    position in time of variables appropriately:
586    \begin{eqnarray}
587    \phi^{n}_{hyd} & = & \int b(\theta^{n},S^{n}) dr
588    \label{eq:phi-hyd-staggered} \\
589    \vec{\bf G}_{\vec{\bf v}}^{n-1/2} & = & \vec{\bf G}_{\vec{\bf v}} ( \vec{\bf v}^{n-1/2} )
590    \label{eq:Gv-n-staggered} \\
591    \vec{\bf G}_{\vec{\bf v}}^{(n)} & = & (3/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n-1/2} - (1/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n-3/2}
592    \label{eq:Gv-n+5-staggered} \\
593    \vec{\bf v}^{*} & = & \vec{\bf v}^{n-1/2} + \Delta t \left( \vec{\bf G}_{\vec{\bf v}}^{(n)} - \nabla \phi_{hyd}^{n} \right)
594    \label{eq:vstar-staggered} \\
595    \vec{\bf v}^{**} & = & {\cal L}_{\vec{\bf v}}^{-1} ( \vec{\bf v}^* )
596    \label{eq:vstarstar-staggered} \\
597    \eta^* & = & \epsilon_{fs} \left( \eta^{n-1/2} + \Delta t (P-E)^n \right)- \Delta t
598      \nabla \cdot H \widehat{ \vec{\bf v}^{**} }
599    \label{eq:nstar-staggered} \\
600    \nabla \cdot g H \nabla \eta^{n+1/2} & - & \frac{\epsilon_{fs} \eta^{n+1/2}}{\Delta t^2}
601    ~ = ~ - \frac{\eta^*}{\Delta t^2}
602    \label{eq:elliptic-staggered} \\
603    \vec{\bf v}^{n+1/2} & = & \vec{\bf v}^{*} - \Delta t g \nabla \eta^{n+1/2}
604    \label{eq:v-n+1-staggered} \\
605    G_{\theta,S}^{n} & = & G_{\theta,S} ( u^{n+1/2}, \theta^{n}, S^{n} )
606    \label{eq:Gt-n-staggered} \\
607    G_{\theta,S}^{(n+1/2)} & = & (3/2+\epsilon_{AB}) G_{\theta,S}^{n}-(1/2+\epsilon_{AB}) G_{\theta,S}^{n-1}
608    \label{eq:Gt-n+5-staggered} \\
609    (\theta^*,S^*) & = & (\theta^{n},S^{n}) + \Delta t G_{\theta,S}^{(n+1/2)}
610    \label{eq:tstar-staggered} \\
611    (\theta^{n+1},S^{n+1}) & = & {\cal L}^{-1}_{\theta,S} (\theta^*,S^*)
612    \label{eq:t-n+1-staggered}
613    \end{eqnarray}
614    The corresponding calling tree is given in
615    \ref{fig:call-tree-adams-bashforth-staggered}.
616    The staggered algorithm is activated with the run-time flag
617    {\bf staggerTimeStep}{\em=.TRUE.} in parameter file {\em data},
618    namelist {\em PARM01}.
619    
620    \begin{figure}
621    \begin{center} \fbox{ \begin{minipage}{4.7in} \begin{tabbing}
622    aaa \= aaa \= aaa \= aaa \= aaa \= aaa \kill
623    FORWARD\_STEP \\
624    \>\> EXTERNAL\_FIELDS\_LOAD\\
625    \>\> DO\_ATMOSPHERIC\_PHYS \\
626    \>\> DO\_OCEANIC\_PHYS \\
627    \> DYNAMICS \\
628    \>\> CALC\_PHI\_HYD \` $\phi_{hyd}^n$ (\ref{eq:phi-hyd-staggered}) \\
629    \>\> MOM\_FLUXFORM or MOM\_VECINV \` $G_{\vec{\bf v}}^{n-1/2}$
630        (\ref{eq:Gv-n-staggered})\\
631    \>\> TIMESTEP \` $\vec{\bf v}^*$ (\ref{eq:Gv-n+5-staggered},
632                                      \ref{eq:vstar-staggered}) \\
633    \>\> IMPLDIFF \` $\vec{\bf v}^{**}$ (\ref{eq:vstarstar-staggered}) \\
634    \> UPDATE\_R\_STAR or UPDATE\_SURF\_DR \` (NonLin-FS only)\\
635    \> SOLVE\_FOR\_PRESSURE \\
636    \>\> CALC\_DIV\_GHAT \` $\eta^*$ (\ref{eq:nstar-staggered}) \\
637    \>\> CG2D \` $\eta^{n+1/2}$ (\ref{eq:elliptic-staggered}) \\
638    \> MOMENTUM\_CORRECTION\_STEP  \\
639    \>\> CALC\_GRAD\_PHI\_SURF \` $\nabla \eta^{n+1/2}$ \\
640    \>\> CORRECTION\_STEP \` $u^{n+1/2}$,$v^{n+1/2}$ (\ref{eq:v-n+1-staggered})\\
641    \> THERMODYNAMICS \\
642    \>\> CALC\_GT \\
643    \>\>\> GAD\_CALC\_RHS \` $G_\theta^n = G_\theta( u, \theta^n )$
644         (\ref{eq:Gt-n-staggered})\\
645    \>\>\> EXTERNAL\_FORCING \` $G_\theta^n = G_\theta^n + {\cal Q}$ \\
646    \>\>\> ADAMS\_BASHFORTH2 \` $G_\theta^{(n+1/2)}$ (\ref{eq:Gt-n+5-staggered}) \\
647    \>\> TIMESTEP\_TRACER \` $\theta^*$ (\ref{eq:tstar-staggered}) \\
648    \>\> IMPLDIFF \` $\theta^{(n+1)}$ (\ref{eq:t-n+1-staggered}) \\
649    \> TRACERS\_CORRECTION\_STEP  \\
650    \>\> CYCLE\_TRACER \` $\theta^{n+1}$ \\
651    \>\> FILTER \` Shapiro Filter, Zonal Filter (FFT) \\
652    \>\> CONVECTIVE\_ADJUSTMENT \` \\
653    \end{tabbing} \end{minipage} } \end{center}
654    \caption{
655    Calling tree for the overall staggered algorithm using
656    Adams-Bashforth time-stepping.
657    The place where the model geometry
658    ({\bf hFac} factors) is updated is added here but is only relevant
659    for the non-linear free-surface algorithm.
660    }
661    \label{fig:call-tree-adams-bashforth-staggered}
662    \end{figure}
663    
664    The only difficulty with this approach is apparent in equation
665    \ref{eq:Gt-n-staggered} and illustrated by the dotted arrow
666    connecting $u,v^{n+1/2}$ with $G_\theta^{n}$. The flow used to advect
667    tracers around is not naturally located in time. This could be avoided
668    by applying the Adams-Bashforth extrapolation to the tracer field
669    itself and advecting that around but this approach is not yet
670    available. We're not aware of any detrimental effect of this
671    feature. The difficulty lies mainly in interpretation of what
672    time-level variables and terms correspond to.
673    
674    
675    \section{Non-hydrostatic formulation}
676    \label{sect:non-hydrostatic}
677    \begin{rawhtml}
678    <!-- CMIREDIR:non-hydrostatic_formulation: -->
679    \end{rawhtml}
680    
681    The non-hydrostatic formulation re-introduces the full vertical
682    momentum equation and requires the solution of a 3-D elliptic
683    equations for non-hydrostatic pressure perturbation. We still
684    intergrate vertically for the hydrostatic pressure and solve a 2-D
685    elliptic equation for the surface pressure/elevation for this reduces
686    the amount of work needed to solve for the non-hydrostatic pressure.
687    
688  The staggered baroclinic time-stepping scheme is equations  The momentum equations are discretized in time as follows:
689  \ref{eq-tDsC-theta} to \ref{eq-tDsC-cont} except that \ref{eq-tDsC-hyd} is replaced with:  \begin{eqnarray}
690    \frac{1}{\Delta t} u^{n+1} + g \partial_x \eta^{n+1} + \partial_x \phi_{nh}^{n+1}
691    & = & \frac{1}{\Delta t} u^{n} + G_u^{(n+1/2)} \label{eq:discrete-time-u-nh} \\
692    \frac{1}{\Delta t} v^{n+1} + g \partial_y \eta^{n+1} + \partial_y \phi_{nh}^{n+1}
693    & = & \frac{1}{\Delta t} v^{n} + G_v^{(n+1/2)} \label{eq:discrete-time-v-nh} \\
694    \frac{1}{\Delta t} w^{n+1} + \partial_r \phi_{nh}^{n+1}
695    & = & \frac{1}{\Delta t} w^{n} + G_w^{(n+1/2)} \label{eq:discrete-time-w-nh}
696    \end{eqnarray}
697    which must satisfy the discrete-in-time depth integrated continuity,
698    equation~\ref{eq:discrete-time-backward-free-surface} and the local continuity equation
699  \begin{equation}  \begin{equation}
700  {\phi'_{hyd}}^{n+1/2} = \int_{r'}^{R_o} b'(\theta^{n+1/2},S^{n+1/2},r)  \partial_x u^{n+1} + \partial_y v^{n+1} + \partial_r w^{n+1} = 0
701  dr  \label{eq:non-divergence-nh}
702  \end{equation}  \end{equation}
703  and the time-level for tracers has been shifted back by half:  As before, the explicit predictions for momentum are consolidated as:
704  \begin{eqnarray*}  \begin{eqnarray*}
705  \theta^* & = &  u^* & = & u^n + \Delta t G_u^{(n+1/2)} \\
706  \theta ^{(n-1/2)} + \Delta t G_{\theta} ^{(n)}  v^* & = & v^n + \Delta t G_v^{(n+1/2)} \\
707  \\  w^* & = & w^n + \Delta t G_w^{(n+1/2)}
 S^* & = &  
 S ^{(n-1/2)} + \Delta t G_{S} ^{(n)}  
 \\  
 \left[ 1 - \partial_r \kappa_v^\theta \partial_r \right]  
 \theta^{n+1/2} & = & \theta^*  
 \\  
 \left[ 1 - \partial_r \kappa_v^S \partial_r \right]  
 S^{n+1/2} & = & S^*  
708  \end{eqnarray*}  \end{eqnarray*}
709    but this time we introduce an intermediate step by splitting the
710    tendancy of the flow as follows:
711    \begin{eqnarray}
712    u^{n+1} = u^{**} - \Delta t \partial_x \phi_{nh}^{n+1}
713    & &
714    u^{**} = u^{*} - \Delta t g \partial_x \eta^{n+1} \\
715    v^{n+1} = v^{**} - \Delta t \partial_y \phi_{nh}^{n+1}
716    & &
717    v^{**} = v^{*} - \Delta t g \partial_y \eta^{n+1}
718    \end{eqnarray}
719    Substituting into the depth integrated continuity
720    (equation~\ref{eq:discrete-time-backward-free-surface}) gives
721    \begin{equation}
722    \partial_x H \partial_x \left( g \eta^{n+1} + \widehat{\phi}_{nh}^{n+1} \right)
723    +
724    \partial_y H \partial_y \left( g \eta^{n+1} + \widehat{\phi}_{nh}^{n+1} \right)
725     - \frac{\epsilon_{fs}\eta^*}{\Delta t^2}
726    = - \frac{\eta^*}{\Delta t^2}
727    \end{equation}
728    which is approximated by equation
729    \ref{eq:elliptic-backward-free-surface} on the basis that i)
730    $\phi_{nh}^{n+1}$ is not yet known and ii) $\nabla \widehat{\phi}_{nh}
731    << g \nabla \eta$. If \ref{eq:elliptic-backward-free-surface} is
732    solved accurately then the implication is that $\widehat{\phi}_{nh}
733    \approx 0$ so that thet non-hydrostatic pressure field does not drive
734    barotropic motion.
735    
736    The flow must satisfy non-divergence
737    (equation~\ref{eq:non-divergence-nh}) locally, as well as depth
738    integrated, and this constraint is used to form a 3-D elliptic
739    equations for $\phi_{nh}^{n+1}$:
740    \begin{equation}
741    \partial_{xx} \phi_{nh}^{n+1} + \partial_{yy} \phi_{nh}^{n+1} +
742    \partial_{rr} \phi_{nh}^{n+1} =
743    \partial_x u^{**} + \partial_y v^{**} + \partial_r w^{*}
744    \end{equation}
745    
746    The entire algorithm can be summarized as the sequential solution of
747    the following equations:
748    \begin{eqnarray}
749    u^{*} & = & u^{n} + \Delta t G_u^{(n+1/2)} \label{eq:ustar-nh} \\
750    v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-nh} \\
751    w^{*} & = & w^{n} + \Delta t G_w^{(n+1/2)} \label{eq:wstar-nh} \\
752    \eta^* ~ = ~ \epsilon_{fs} \left( \eta^{n} + \Delta t (P-E) \right)
753    & - & \Delta t
754      \partial_x H \widehat{u^{*}}
755    + \partial_y H \widehat{v^{*}}
756    \\
757      \partial_x g H \partial_x \eta^{n+1}
758    + \partial_y g H \partial_y \eta^{n+1}
759    & - & \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2}
760    ~ = ~
761    - \frac{\eta^*}{\Delta t^2}
762    \label{eq:elliptic-nh}
763    \\
764    u^{**} & = & u^{*} - \Delta t g \partial_x \eta^{n+1} \label{eq:unx-nh}\\
765    v^{**} & = & v^{*} - \Delta t g \partial_y \eta^{n+1} \label{eq:vnx-nh}\\
766    \partial_{xx} \phi_{nh}^{n+1} + \partial_{yy} \phi_{nh}^{n+1} +
767    \partial_{rr} \phi_{nh}^{n+1} & = &
768    \partial_x u^{**} + \partial_y v^{**} + \partial_r w^{*} \\
769    u^{n+1} & = & u^{**} - \Delta t \partial_x \phi_{nh}^{n+1} \label{eq:un+1-nh}\\
770    v^{n+1} & = & v^{**} - \Delta t \partial_y \phi_{nh}^{n+1} \label{eq:vn+1-nh}\\
771    \partial_r w^{n+1} & = & - \partial_x u^{n+1} - \partial_y v^{n+1}
772    \end{eqnarray}
773    where the last equation is solved by vertically integrating for
774    $w^{n+1}$.
775    
776    
777    
778  \subsection{Surface pressure}  \section{Variants on the Free Surface}
779    \label{sect:free-surface}
780    
781  Substituting \ref{eq-tDsC-Hmom} into \ref{eq-tDsC-cont}, assuming  We now describe the various formulations of the free-surface that
782  $\epsilon_{nh} = 0$ yields a Helmholtz equation for ${\eta}^{n+1}$:  include non-linear forms, implicit in time using Crank-Nicholson,
783    explicit and [one day] split-explicit. First, we'll reiterate the
784    underlying algorithm but this time using the notation consistent with
785    the more general vertical coordinate $r$. The elliptic equation for
786    free-surface coordinate (units of $r$), corresponding to
787    \ref{eq:discrete-time-backward-free-surface}, and
788    assuming no non-hydrostatic effects ($\epsilon_{nh} = 0$) is:
789  \begin{eqnarray}  \begin{eqnarray}
790  \epsilon_{fs} {\eta}^{n+1} -  \epsilon_{fs} {\eta}^{n+1} -
791  {\bf \nabla}_h \cdot \Delta t^2 (R_o-R_{fixed})  {\bf \nabla}_h \cdot \Delta t^2 (R_o-R_{fixed}) {\bf \nabla}_h b_s
792  {\bf \nabla}_h b_s {\eta}^{n+1}  {\eta}^{n+1} = {\eta}^*
 = {\eta}^*  
793  \label{eq-solve2D}  \label{eq-solve2D}
794  \end{eqnarray}  \end{eqnarray}
795  where  where
# Line 335  $\eta^{n+1}$: {\bf etaN} (\em DYNVARS.h) Line 815  $\eta^{n+1}$: {\bf etaN} (\em DYNVARS.h)
815    
816    
817  Once ${\eta}^{n+1}$ has been found, substituting into  Once ${\eta}^{n+1}$ has been found, substituting into
818  \ref{eq-tDsC-Hmom} yields $\vec{\bf v}^{n+1}$ if the model is  \ref{eq:discrete-time-u}, \ref{eq:discrete-time-v} yields $\vec{\bf v}^{n+1}$
819  hydrostatic ($\epsilon_{nh}=0$):  if the model is hydrostatic ($\epsilon_{nh}=0$):
820  $$  $$
821  \vec{\bf v}^{n+1} = \vec{\bf v}^{*}  \vec{\bf v}^{n+1} = \vec{\bf v}^{*}
822  - \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}  - \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}
# Line 345  $$ Line 825  $$
825  This is known as the correction step. However, when the model is  This is known as the correction step. However, when the model is
826  non-hydrostatic ($\epsilon_{nh}=1$) we need an additional step and an  non-hydrostatic ($\epsilon_{nh}=1$) we need an additional step and an
827  additional equation for $\phi'_{nh}$. This is obtained by substituting  additional equation for $\phi'_{nh}$. This is obtained by substituting
828  \ref{eq-tDsC-Hmom} and \ref{eq-tDsC-Vmom} into  \ref{eq:discrete-time-u-nh}, \ref{eq:discrete-time-v-nh} and \ref{eq:discrete-time-w-nh}
829  \ref{eq-tDsC-cont}:  into continuity:
830  \begin{equation}  \begin{equation}
831  \left[ {\bf \nabla}_h^2 + \partial_{rr} \right] {\phi'_{nh}}^{n+1}  \left[ {\bf \nabla}_h^2 + \partial_{rr} \right] {\phi'_{nh}}^{n+1}
832  = \frac{1}{\Delta t} \left(  = \frac{1}{\Delta t} \left(
# Line 409  at the same point in the code. Line 889  at the same point in the code.
889    
890    
891  \subsection{Crank-Nickelson barotropic time stepping}  \subsection{Crank-Nickelson barotropic time stepping}
892    \label{sect:freesurf-CrankNick}
893    
894  The full implicit time stepping described previously is  The full implicit time stepping described previously is
895  unconditionally stable but damps the fast gravity waves, resulting in  unconditionally stable but damps the fast gravity waves, resulting in
# Line 423  stable, Crank-Nickelson scheme; $(\beta, Line 904  stable, Crank-Nickelson scheme; $(\beta,
904  corresponds to the forward - backward scheme that conserves energy but is  corresponds to the forward - backward scheme that conserves energy but is
905  only stable for small time steps.\\  only stable for small time steps.\\
906  In the code, $\beta,\gamma$ are defined as parameters, respectively  In the code, $\beta,\gamma$ are defined as parameters, respectively
907  {\it implicSurfPress}, {\it implicDiv2DFlow}. They are read from  {\bf implicSurfPress}, {\bf implicDiv2DFlow}. They are read from
908  the main data file "{\it data}" and are set by default to 1,1.  the main parameter file "{\em data}" and are set by default to 1,1.
909    
910  Equations \ref{eq-tDsC-Hmom} and \ref{eq-tDsC-eta} are modified as follows:  Equations \ref{eq:ustar-backward-free-surface} --
911  $$  \ref{eq:vn+1-backward-free-surface} are modified as follows:
912    \begin{eqnarray*}
913  \frac{ \vec{\bf v}^{n+1} }{ \Delta t }  \frac{ \vec{\bf v}^{n+1} }{ \Delta t }
914  + {\bf \nabla}_h b_s [ \beta {\eta}^{n+1} + (1-\beta) {\eta}^{n} ]  + {\bf \nabla}_h b_s [ \beta {\eta}^{n+1} + (1-\beta) {\eta}^{n} ]
915  + \epsilon_{nh} {\bf \nabla}_h {\phi'_{nh}}^{n+1}  + \epsilon_{nh} {\bf \nabla}_h {\phi'_{nh}}^{n+1}
916   = \frac{ \vec{\bf v}^* }{ \Delta t }   = \frac{ \vec{\bf v}^* }{ \Delta t }
917  $$  \end{eqnarray*}
918  $$  \begin{eqnarray}
919  \epsilon_{fs} \frac{ {\eta}^{n+1} - {\eta}^{n} }{ \Delta t}  \epsilon_{fs} \frac{ {\eta}^{n+1} - {\eta}^{n} }{ \Delta t}
920  + {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o}  + {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o}
921  [ \gamma \vec{\bf v}^{n+1} + (1-\gamma) \vec{\bf v}^{n}] dr  [ \gamma \vec{\bf v}^{n+1} + (1-\gamma) \vec{\bf v}^{n}] dr
922  = \epsilon_{fw} (P-E)  = \epsilon_{fw} (P-E)
923  $$  \label{eq:eta-n+1-CrankNick}
924    \end{eqnarray}
925  where:  where:
926  \begin{eqnarray*}  \begin{eqnarray*}
927  \vec{\bf v}^* & = &  \vec{\bf v}^* & = &
# Line 460  $$ Line 943  $$
943  {\bf \nabla}_h {\eta}^{n+1}  {\bf \nabla}_h {\eta}^{n+1}
944  = {\eta}^*  = {\eta}^*
945  $$  $$
946  and then to compute (correction step):  and then to compute ({\em CORRECTION\_STEP}):
947  $$  $$
948  \vec{\bf v}^{n+1} = \vec{\bf v}^{*}  \vec{\bf v}^{n+1} = \vec{\bf v}^{*}
949  - \beta \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}  - \beta \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}
950  $$  $$
951    
952  The non-hydrostatic part is solved as described previously.  %The non-hydrostatic part is solved as described previously.
953    
954  Note that:  \noindent
955    Notes:
956  \begin{enumerate}  \begin{enumerate}
957    \item The RHS term of equation \ref{eq:eta-n+1-CrankNick}
958    corresponds the contribution of fresh water flux (P-E)
959    to the free-surface variations ($\epsilon_{fw}=1$,
960    {\bf useRealFreshWater}{\em=TRUE} in parameter file {\em data}).
961    In order to remain consistent with the tracer equation, specially in
962    the non-linear free-surface formulation, this term is also
963    affected by the Crank-Nickelson time stepping. The RHS reads:
964    $\epsilon_{fw} ( \gamma (P-E)^{n+1/2} + (1-\gamma) (P-E)^{n-1/2} )$
965  \item The non-hydrostatic part of the code has not yet been  \item The non-hydrostatic part of the code has not yet been
966  updated, so that this option cannot be used with $(\beta,\gamma) \neq (1,1)$.  updated, and therefore cannot be used with $(\beta,\gamma) \neq (1,1)$.
967  \item The stability criteria with Crank-Nickelson time stepping  \item The stability criteria with Crank-Nickelson time stepping
968  for the pure linear gravity wave problem in cartesian coordinates is:  for the pure linear gravity wave problem in cartesian coordinates is:
969  \begin{itemize}  \begin{itemize}

Legend:
Removed from v.1.7  
changed lines
  Added in v.1.24

  ViewVC Help
Powered by ViewVC 1.1.22