776 |
equations for $\phi_{nh}^{n+1}$: |
equations for $\phi_{nh}^{n+1}$: |
777 |
\begin{equation} |
\begin{equation} |
778 |
\partial_{xx} \phi_{nh}^{n+1} + \partial_{yy} \phi_{nh}^{n+1} + |
\partial_{xx} \phi_{nh}^{n+1} + \partial_{yy} \phi_{nh}^{n+1} + |
779 |
\partial_{rr} \phi_{nh}^{n+1} = |
\partial_{rr} \phi_{nh}^{n+1} = \left( |
780 |
\partial_x u^{**} + \partial_y v^{**} + \partial_r w^{*} |
\partial_x u^{**} + \partial_y v^{**} + \partial_r w^{*} |
781 |
|
\right) / \Delta t |
782 |
\end{equation} |
\end{equation} |
783 |
|
|
784 |
The entire algorithm can be summarized as the sequential solution of |
The entire algorithm can be summarized as the sequential solution of |
801 |
u^{**} & = & u^{*} - \Delta t g \partial_x \eta^{n+1} \label{eq:unx-nh}\\ |
u^{**} & = & u^{*} - \Delta t g \partial_x \eta^{n+1} \label{eq:unx-nh}\\ |
802 |
v^{**} & = & v^{*} - \Delta t g \partial_y \eta^{n+1} \label{eq:vnx-nh}\\ |
v^{**} & = & v^{*} - \Delta t g \partial_y \eta^{n+1} \label{eq:vnx-nh}\\ |
803 |
\partial_{xx} \phi_{nh}^{n+1} + \partial_{yy} \phi_{nh}^{n+1} + |
\partial_{xx} \phi_{nh}^{n+1} + \partial_{yy} \phi_{nh}^{n+1} + |
804 |
\partial_{rr} \phi_{nh}^{n+1} & = & |
\partial_{rr} \phi_{nh}^{n+1} & = & \left( |
805 |
\partial_x u^{**} + \partial_y v^{**} + \partial_r w^{*} \label{eq:phi-nh}\\ |
\partial_x u^{**} + \partial_y v^{**} + \partial_r w^{*} |
806 |
|
\right) / \Delta t \label{eq:phi-nh}\\ |
807 |
u^{n+1} & = & u^{**} - \Delta t \partial_x \phi_{nh}^{n+1} \label{eq:un+1-nh}\\ |
u^{n+1} & = & u^{**} - \Delta t \partial_x \phi_{nh}^{n+1} \label{eq:un+1-nh}\\ |
808 |
v^{n+1} & = & v^{**} - \Delta t \partial_y \phi_{nh}^{n+1} \label{eq:vn+1-nh}\\ |
v^{n+1} & = & v^{**} - \Delta t \partial_y \phi_{nh}^{n+1} \label{eq:vn+1-nh}\\ |
809 |
\partial_r w^{n+1} & = & - \partial_x u^{n+1} - \partial_y v^{n+1} |
\partial_r w^{n+1} & = & - \partial_x u^{n+1} - \partial_y v^{n+1} |
811 |
where the last equation is solved by vertically integrating for |
where the last equation is solved by vertically integrating for |
812 |
$w^{n+1}$. |
$w^{n+1}$. |
813 |
|
|
|
|
|
|
|
|
814 |
\section{Variants on the Free Surface} |
\section{Variants on the Free Surface} |
815 |
\label{sec:free-surface} |
\label{sec:free-surface} |
816 |
|
|