263 |
\begin{eqnarray} |
\begin{eqnarray} |
264 |
u^{*} & = & u^{n} + \Delta t G_u^{(n+1/2)} \label{eq:ustar-backward-free-surface} \\ |
u^{*} & = & u^{n} + \Delta t G_u^{(n+1/2)} \label{eq:ustar-backward-free-surface} \\ |
265 |
v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-backward-free-surface} \\ |
v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-backward-free-surface} \\ |
266 |
\eta^* & = & \epsilon_{fs} \left( \eta^{n} + \Delta t (P-E) \right)- \Delta t |
\eta^* & = & \epsilon_{fs} \left( \eta^{n} + \Delta t (P-E) \right) |
267 |
\partial_x H \widehat{u^{*}} |
- \Delta t \left( \partial_x H \widehat{u^{*}} |
268 |
+ \partial_y H \widehat{v^{*}} |
+ \partial_y H \widehat{v^{*}} \right) |
269 |
\\ |
\\ |
270 |
\partial_x g H \partial_x \eta^{n+1} |
\partial_x g H \partial_x \eta^{n+1} |
271 |
& + & \partial_y g H \partial_y \eta^{n+1} |
& + & \partial_y g H \partial_y \eta^{n+1} |
425 |
\end{eqnarray} |
\end{eqnarray} |
426 |
where ${\cal L}_\tau^{-1}$ is the inverse of the operator |
where ${\cal L}_\tau^{-1}$ is the inverse of the operator |
427 |
\begin{equation} |
\begin{equation} |
428 |
{\cal L} = \left[ 1 + \Delta t \partial_r \kappa_v \partial_r \right] |
{\cal L}_\tau = \left[ 1 + \Delta t \partial_r \kappa_v \partial_r \right] |
429 |
\end{equation} |
\end{equation} |
430 |
Equation \ref{eq:taustar-implicit} looks exactly as \ref{eq:taustar} |
Equation \ref{eq:taustar-implicit} looks exactly as \ref{eq:taustar} |
431 |
while \ref{eq:tau-n+1-implicit} involves an operator or matrix |
while \ref{eq:tau-n+1-implicit} involves an operator or matrix |
542 |
\nabla \cdot g H \nabla \eta^{n+1} & - & \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2} |
\nabla \cdot g H \nabla \eta^{n+1} & - & \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2} |
543 |
~ = ~ - \frac{\eta^*}{\Delta t^2} |
~ = ~ - \frac{\eta^*}{\Delta t^2} |
544 |
\label{eq:elliptic-sync} \\ |
\label{eq:elliptic-sync} \\ |
545 |
\vec{\bf v}^{n+1} & = & \vec{\bf v}^{*} - \Delta t g \nabla \eta^{n+1} |
\vec{\bf v}^{n+1} & = & \vec{\bf v}^{**} - \Delta t g \nabla \eta^{n+1} |
546 |
\label{eq:v-n+1-sync} |
\label{eq:v-n+1-sync} |
547 |
\end{eqnarray} |
\end{eqnarray} |
548 |
Fig.~\ref{fig:adams-bashforth-sync} illustrates the location of |
Fig.~\ref{fig:adams-bashforth-sync} illustrates the location of |
613 |
allowing the use of the most recent velocities to compute |
allowing the use of the most recent velocities to compute |
614 |
the advection terms. Once the thermodynamics fields are |
the advection terms. Once the thermodynamics fields are |
615 |
updated, the hydrostatic pressure is computed |
updated, the hydrostatic pressure is computed |
616 |
to step forwrad the dynamics. |
to step forward the dynamics. |
617 |
Note that the pressure gradient must also be taken out of the |
Note that the pressure gradient must also be taken out of the |
618 |
Adams-Bashforth extrapolation. Also, retaining the integer time-levels, |
Adams-Bashforth extrapolation. Also, retaining the integer time-levels, |
619 |
$n$ and $n+1$, does not give a user the sense of where variables are |
$n$ and $n+1$, does not give a user the sense of where variables are |
637 |
\nabla \cdot g H \nabla \eta^{n+1/2} & - & \frac{\epsilon_{fs} \eta^{n+1/2}}{\Delta t^2} |
\nabla \cdot g H \nabla \eta^{n+1/2} & - & \frac{\epsilon_{fs} \eta^{n+1/2}}{\Delta t^2} |
638 |
~ = ~ - \frac{\eta^*}{\Delta t^2} |
~ = ~ - \frac{\eta^*}{\Delta t^2} |
639 |
\label{eq:elliptic-staggered} \\ |
\label{eq:elliptic-staggered} \\ |
640 |
\vec{\bf v}^{n+1/2} & = & \vec{\bf v}^{*} - \Delta t g \nabla \eta^{n+1/2} |
\vec{\bf v}^{n+1/2} & = & \vec{\bf v}^{**} - \Delta t g \nabla \eta^{n+1/2} |
641 |
\label{eq:v-n+1-staggered} \\ |
\label{eq:v-n+1-staggered} \\ |
642 |
G_{\theta,S}^{n} & = & G_{\theta,S} ( u^{n+1/2}, \theta^{n}, S^{n} ) |
G_{\theta,S}^{n} & = & G_{\theta,S} ( u^{n+1/2}, \theta^{n}, S^{n} ) |
643 |
\label{eq:Gt-n-staggered} \\ |
\label{eq:Gt-n-staggered} \\ |
718 |
The non-hydrostatic formulation re-introduces the full vertical |
The non-hydrostatic formulation re-introduces the full vertical |
719 |
momentum equation and requires the solution of a 3-D elliptic |
momentum equation and requires the solution of a 3-D elliptic |
720 |
equations for non-hydrostatic pressure perturbation. We still |
equations for non-hydrostatic pressure perturbation. We still |
721 |
intergrate vertically for the hydrostatic pressure and solve a 2-D |
integrate vertically for the hydrostatic pressure and solve a 2-D |
722 |
elliptic equation for the surface pressure/elevation for this reduces |
elliptic equation for the surface pressure/elevation for this reduces |
723 |
the amount of work needed to solve for the non-hydrostatic pressure. |
the amount of work needed to solve for the non-hydrostatic pressure. |
724 |
|
|
759 |
\partial_x H \partial_x \left( g \eta^{n+1} + \widehat{\phi}_{nh}^{n+1} \right) |
\partial_x H \partial_x \left( g \eta^{n+1} + \widehat{\phi}_{nh}^{n+1} \right) |
760 |
+ |
+ |
761 |
\partial_y H \partial_y \left( g \eta^{n+1} + \widehat{\phi}_{nh}^{n+1} \right) |
\partial_y H \partial_y \left( g \eta^{n+1} + \widehat{\phi}_{nh}^{n+1} \right) |
762 |
- \frac{\epsilon_{fs}\eta^*}{\Delta t^2} |
- \frac{\epsilon_{fs}\eta^{n+1}}{\Delta t^2} |
763 |
= - \frac{\eta^*}{\Delta t^2} |
= - \frac{\eta^*}{\Delta t^2} |
764 |
\end{equation} |
\end{equation} |
765 |
which is approximated by equation |
which is approximated by equation |
767 |
$\phi_{nh}^{n+1}$ is not yet known and ii) $\nabla \widehat{\phi}_{nh} |
$\phi_{nh}^{n+1}$ is not yet known and ii) $\nabla \widehat{\phi}_{nh} |
768 |
<< g \nabla \eta$. If \ref{eq:elliptic-backward-free-surface} is |
<< g \nabla \eta$. If \ref{eq:elliptic-backward-free-surface} is |
769 |
solved accurately then the implication is that $\widehat{\phi}_{nh} |
solved accurately then the implication is that $\widehat{\phi}_{nh} |
770 |
\approx 0$ so that thet non-hydrostatic pressure field does not drive |
\approx 0$ so that the non-hydrostatic pressure field does not drive |
771 |
barotropic motion. |
barotropic motion. |
772 |
|
|
773 |
The flow must satisfy non-divergence |
The flow must satisfy non-divergence |
787 |
v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-nh} \\ |
v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-nh} \\ |
788 |
w^{*} & = & w^{n} + \Delta t G_w^{(n+1/2)} \label{eq:wstar-nh} \\ |
w^{*} & = & w^{n} + \Delta t G_w^{(n+1/2)} \label{eq:wstar-nh} \\ |
789 |
\eta^* ~ = ~ \epsilon_{fs} \left( \eta^{n} + \Delta t (P-E) \right) |
\eta^* ~ = ~ \epsilon_{fs} \left( \eta^{n} + \Delta t (P-E) \right) |
790 |
& - & \Delta t |
& - & \Delta t \left( \partial_x H \widehat{u^{*}} |
791 |
\partial_x H \widehat{u^{*}} |
+ \partial_y H \widehat{v^{*}} \right) |
|
+ \partial_y H \widehat{v^{*}} |
|
792 |
\\ |
\\ |
793 |
\partial_x g H \partial_x \eta^{n+1} |
\partial_x g H \partial_x \eta^{n+1} |
794 |
+ \partial_y g H \partial_y \eta^{n+1} |
+ \partial_y g H \partial_y \eta^{n+1} |