542 |
\nabla \cdot g H \nabla \eta^{n+1} & - & \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2} |
\nabla \cdot g H \nabla \eta^{n+1} & - & \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2} |
543 |
~ = ~ - \frac{\eta^*}{\Delta t^2} |
~ = ~ - \frac{\eta^*}{\Delta t^2} |
544 |
\label{eq:elliptic-sync} \\ |
\label{eq:elliptic-sync} \\ |
545 |
\vec{\bf v}^{n+1} & = & \vec{\bf v}^{*} - \Delta t g \nabla \eta^{n+1} |
\vec{\bf v}^{n+1} & = & \vec{\bf v}^{**} - \Delta t g \nabla \eta^{n+1} |
546 |
\label{eq:v-n+1-sync} |
\label{eq:v-n+1-sync} |
547 |
\end{eqnarray} |
\end{eqnarray} |
548 |
Fig.~\ref{fig:adams-bashforth-sync} illustrates the location of |
Fig.~\ref{fig:adams-bashforth-sync} illustrates the location of |
637 |
\nabla \cdot g H \nabla \eta^{n+1/2} & - & \frac{\epsilon_{fs} \eta^{n+1/2}}{\Delta t^2} |
\nabla \cdot g H \nabla \eta^{n+1/2} & - & \frac{\epsilon_{fs} \eta^{n+1/2}}{\Delta t^2} |
638 |
~ = ~ - \frac{\eta^*}{\Delta t^2} |
~ = ~ - \frac{\eta^*}{\Delta t^2} |
639 |
\label{eq:elliptic-staggered} \\ |
\label{eq:elliptic-staggered} \\ |
640 |
\vec{\bf v}^{n+1/2} & = & \vec{\bf v}^{*} - \Delta t g \nabla \eta^{n+1/2} |
\vec{\bf v}^{n+1/2} & = & \vec{\bf v}^{**} - \Delta t g \nabla \eta^{n+1/2} |
641 |
\label{eq:v-n+1-staggered} \\ |
\label{eq:v-n+1-staggered} \\ |
642 |
G_{\theta,S}^{n} & = & G_{\theta,S} ( u^{n+1/2}, \theta^{n}, S^{n} ) |
G_{\theta,S}^{n} & = & G_{\theta,S} ( u^{n+1/2}, \theta^{n}, S^{n} ) |
643 |
\label{eq:Gt-n-staggered} \\ |
\label{eq:Gt-n-staggered} \\ |
759 |
\partial_x H \partial_x \left( g \eta^{n+1} + \widehat{\phi}_{nh}^{n+1} \right) |
\partial_x H \partial_x \left( g \eta^{n+1} + \widehat{\phi}_{nh}^{n+1} \right) |
760 |
+ |
+ |
761 |
\partial_y H \partial_y \left( g \eta^{n+1} + \widehat{\phi}_{nh}^{n+1} \right) |
\partial_y H \partial_y \left( g \eta^{n+1} + \widehat{\phi}_{nh}^{n+1} \right) |
762 |
- \frac{\epsilon_{fs}\eta^*}{\Delta t^2} |
- \frac{\epsilon_{fs}\eta^{n+1}}{\Delta t^2} |
763 |
= - \frac{\eta^*}{\Delta t^2} |
= - \frac{\eta^*}{\Delta t^2} |
764 |
\end{equation} |
\end{equation} |
765 |
which is approximated by equation |
which is approximated by equation |
767 |
$\phi_{nh}^{n+1}$ is not yet known and ii) $\nabla \widehat{\phi}_{nh} |
$\phi_{nh}^{n+1}$ is not yet known and ii) $\nabla \widehat{\phi}_{nh} |
768 |
<< g \nabla \eta$. If \ref{eq:elliptic-backward-free-surface} is |
<< g \nabla \eta$. If \ref{eq:elliptic-backward-free-surface} is |
769 |
solved accurately then the implication is that $\widehat{\phi}_{nh} |
solved accurately then the implication is that $\widehat{\phi}_{nh} |
770 |
\approx 0$ so that thet non-hydrostatic pressure field does not drive |
\approx 0$ so that the non-hydrostatic pressure field does not drive |
771 |
barotropic motion. |
barotropic motion. |
772 |
|
|
773 |
The flow must satisfy non-divergence |
The flow must satisfy non-divergence |
787 |
v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-nh} \\ |
v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-nh} \\ |
788 |
w^{*} & = & w^{n} + \Delta t G_w^{(n+1/2)} \label{eq:wstar-nh} \\ |
w^{*} & = & w^{n} + \Delta t G_w^{(n+1/2)} \label{eq:wstar-nh} \\ |
789 |
\eta^* ~ = ~ \epsilon_{fs} \left( \eta^{n} + \Delta t (P-E) \right) |
\eta^* ~ = ~ \epsilon_{fs} \left( \eta^{n} + \Delta t (P-E) \right) |
790 |
& - & \Delta t |
& - & \Delta t \left( \partial_x H \widehat{u^{*}} |
791 |
\partial_x H \widehat{u^{*}} |
+ \partial_y H \widehat{v^{*}} \right) |
|
+ \partial_y H \widehat{v^{*}} |
|
792 |
\\ |
\\ |
793 |
\partial_x g H \partial_x \eta^{n+1} |
\partial_x g H \partial_x \eta^{n+1} |
794 |
+ \partial_y g H \partial_y \eta^{n+1} |
+ \partial_y g H \partial_y \eta^{n+1} |