/[MITgcm]/manual/s_algorithm/text/time_stepping.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/time_stepping.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.3 by jmc, Thu Aug 9 20:06:18 2001 UTC revision 1.5 by jmc, Mon Sep 24 19:30:40 2001 UTC
# Line 21  The continuous form of the model equatio Line 21  The continuous form of the model equatio
21    
22  \begin{eqnarray}  \begin{eqnarray}
23  \partial_t \theta & = & G_\theta  \partial_t \theta & = & G_\theta
24    \label{eq-tCsC-theta}
25  \\  \\
26  \partial_t S & = & G_s  \partial_t S & = & G_s
27    \label{eq-tCsC-salt}
28  \\  \\
29  b' & = & b'(\theta,S,r)  b' & = & b'(\theta,S,r)
30  \\  \\
31  \partial_r \phi'_{hyd} & = & -b'  \partial_r \phi'_{hyd} & = & -b'
32  \label{eq-r-split-hyd}  \label{eq-tCsC-hyd}
33  \\  \\
34  \partial_t \vec{\bf v}  \partial_t \vec{\bf v}
35  + {\bf \nabla}_h b_s \eta  + {\bf \nabla}_h b_s \eta
36  + \epsilon_{nh} {\bf \nabla}_h \phi'_{nh}  + \epsilon_{nh} {\bf \nabla}_h \phi'_{nh}
37  & = & \vec{\bf G}_{\vec{\bf v}}  & = & \vec{\bf G}_{\vec{\bf v}}
38  - {\bf \nabla}_h \phi'_{hyd}  - {\bf \nabla}_h \phi'_{hyd}
39  \label{eq-r-split-hmom}  \label{eq-tCsC-Hmom}
40  \\  \\
41  \epsilon_{nh} \frac {\partial{\dot{r}}}{\partial{t}}  \epsilon_{nh} \frac {\partial{\dot{r}}}{\partial{t}}
42  + \epsilon_{nh} \partial_r \phi'_{nh}  + \epsilon_{nh} \partial_r \phi'_{nh}
43  & = & \epsilon_{nh} G_{\dot{r}}  & = & \epsilon_{nh} G_{\dot{r}}
44  \label{eq-r-split-rdot}  \label{eq-tCsC-Vmom}
45  \\  \\
46  {\bf \nabla}_h \cdot \vec{\bf v} + \partial_r \dot{r}  {\bf \nabla}_h \cdot \vec{\bf v} + \partial_r \dot{r}
47  & = & 0  & = & 0
48  \label{eq-r-cont}  \label{eq-tCsC-cont}
49  \end{eqnarray}  \end{eqnarray}
50  where  where
51  \begin{eqnarray*}  \begin{eqnarray*}
# Line 71  all the RHS terms except the pressure / Line 73  all the RHS terms except the pressure /
73  The switch $\epsilon_{nh}$ allows to activate the non hydrostatic  The switch $\epsilon_{nh}$ allows to activate the non hydrostatic
74  mode ($\epsilon_{nh}=1$) for the ocean model. Otherwise,  mode ($\epsilon_{nh}=1$) for the ocean model. Otherwise,
75  in the hydrostatic limit $\epsilon_{nh} = 0$  in the hydrostatic limit $\epsilon_{nh} = 0$
76  and equation \ref{eq-r-split-rdot} vanishes.  and equation \ref{eq-tCsC-Vmom} vanishes.
77    
78  The equation for $\eta$ is obtained by integrating the  The equation for $\eta$ is obtained by integrating the
79  continuity equation over the entire depth of the fluid,  continuity equation over the entire depth of the fluid,
80  from $R_{min}(x,y)$ up to $R_o(x,y)$  from $R_{fixed}(x,y)$ up to $R_o(x,y)$
81  (Linear free surface):  (Linear free surface):
82  \begin{eqnarray}  \begin{eqnarray}
83  \epsilon_{fs} \partial_t \eta =  \epsilon_{fs} \partial_t \eta =
84  \left. \dot{r} \right|_{r=r_{surf}} + \epsilon_{fw} (P-E) =  \left. \dot{r} \right|_{r=r_{surf}} + \epsilon_{fw} (P-E) =
85  - {\bf \nabla} \cdot \int_{R_{min}}^{R_o} \vec{\bf v} dr  - {\bf \nabla} \cdot \int_{R_{fixed}}^{R_o} \vec{\bf v} dr
86  + \epsilon_{fw} (P-E)  + \epsilon_{fw} (P-E)
87  \label{eq-cont-2D}  \label{eq-tCsC-eta}
88  \end{eqnarray}  \end{eqnarray}
89    
90  Where $\epsilon_{fs}$,$\epsilon_{fw}$ are two flags to  Where $\epsilon_{fs}$,$\epsilon_{fw}$ are two flags to
# Line 93  at the ocean surface (natural BC) ($\eps Line 95  at the ocean surface (natural BC) ($\eps
95  or not ($\epsilon_{fw} = 0$).  or not ($\epsilon_{fw} = 0$).
96    
97  The hydrostatic potential is found by  The hydrostatic potential is found by
98  integrating \ref{eq-r-split-hyd} with the boundary condition that  integrating \ref{eq-tCsC-hyd} with the boundary condition that
99  $\phi'_{hyd}(r=R_o) = 0$:  $\phi'_{hyd}(r=R_o) = 0$:
100  \begin{eqnarray*}  \begin{eqnarray*}
101  & &  & &
# Line 107  $\phi'_{hyd}(r=R_o) = 0$: Line 109  $\phi'_{hyd}(r=R_o) = 0$:
109    
110  \subsection{General method}  \subsection{General method}
111    
112    An overview of the general method is presented hereafter,
113    with explicit references to the Fortran code. This part
114    often refers to the discretized equations of the model
115    that are detailed in the following sections.
116    
117  The general algorithm consist in  a "predictor step" that computes  The general algorithm consist in  a "predictor step" that computes
118  the forward tendencies ("G" terms") and all  the forward tendencies ("G" terms") and all
119  the "first guess" values star notation):  the "first guess" values (star notation):
120  $\vec{\bf v}^*, \theta^*, S^*$ (and $\dot{r}^*$  $\theta^*, S^*, \vec{\bf v}^*$ (and $\dot{r}^*$
121  in non-hydrostatic mode). This is done in the routine {\it DYNAMICS}.  in non-hydrostatic mode). This is done in the two routines
122    {\it THERMODYNAMICS} and {\it DYNAMICS}.
123    
124  Then the implicit terms that appear here on the left hand side (LHS),  Then the implicit terms that appear on the left hand side (LHS)
125    of equations \ref{eq-tDsC-theta} - \ref{eq-tDsC-cont},
126  are solved as follows:  are solved as follows:
127  Since implicit vertical diffusion and viscosity terms  Since implicit vertical diffusion and viscosity terms
128  are independent from the barotropic flow adjustment,  are independent from the barotropic flow adjustment,
129  they are computed first, solving a 3 diagonal Nr x Nr linear system,  they are computed first, solving a 3 diagonal Nr x Nr linear system,
130  and incorporated at the end of the {\it DYNAMICS} routines.  and incorporated at the end of the {\it THERMODYNAMICS} and
131    {\it DYNAMICS} routines.
132  Then the surface pressure and non hydrostatic pressure  Then the surface pressure and non hydrostatic pressure
133  are evaluated ({\it SOLVE\_FOR\_PRESSURE});  are evaluated ({\it SOLVE\_FOR\_PRESSURE});
134    
# Line 140  the "target residual" that could be lowe Line 150  the "target residual" that could be lowe
150  the computer truncation error, and also because some filters  the computer truncation error, and also because some filters
151  might alter the divergence part of the flow field,  might alter the divergence part of the flow field,
152  a final evaluation of the surface r anomaly $\eta^{n+1}$  a final evaluation of the surface r anomaly $\eta^{n+1}$
153  is performed, according to \ref{eq-rtd-eta} ({\it CALC\_EXACT\_ETA}).  is performed, according to \ref{eq-tDsC-eta} ({\it CALC\_EXACT\_ETA}).
154  This ensures a perfect volume conservation.  This ensures a perfect volume conservation.
155  Note that there is no need for an equivalent Non-hydrostatic  Note that there is no need for an equivalent Non-hydrostatic
156  "exact conservation" step, since W is already computed after  "exact conservation" step, since W is already computed after
157  the filters applied.  the filters applied.
158    
 optionnal forcing terms (package):\\  
159  Regarding optional forcing terms (usually part of a "package"),  Regarding optional forcing terms (usually part of a "package"),
160  that a account for a specific source or sink term (e.g.: condensation  that account for a specific source or sink term (e.g.: condensation
161  as a sink of water vapor Q), they are generally incorporated  as a sink of water vapor Q), they are generally incorporated
162  in the main algorithm as follows;  in the main algorithm as follows;
163  At the the beginning of the time step,  At the the beginning of the time step,
164  the additionnal tendencies are computed  the additional tendencies are computed
165  as function of the present state (time step $n$) and external forcing ;  as function of the present state (time step $n$) and external forcing ;
166  Then within the main part of model,  Then within the main part of model,
167  only those new tendencies are added to the model variables.  only those new tendencies are added to the model variables.
168    
169  [more details needed]\\  [more details needed]\\
170    
171  The atmospheric physics follows this general scheme.  The atmospheric physics follows this general scheme.
172    
173    [more about C\_grid, A\_grid conversion \& drag term]\\
174    
175  \subsection{Standard synchronous time stepping}  \subsection{Standard synchronous time stepping}
176    
177  In the standard formulation, the surface pressure is  In the standard formulation, the surface pressure is
# Line 169  as follows: Line 181  as follows:
181  \begin{eqnarray}  \begin{eqnarray}
182  \left[ 1 - \partial_r \kappa_v^\theta \partial_r \right]  \left[ 1 - \partial_r \kappa_v^\theta \partial_r \right]
183  \theta^{n+1} & = & \theta^*  \theta^{n+1} & = & \theta^*
184    \label{eq-tDsC-theta}
185  \\  \\
186  \left[ 1 - \partial_r \kappa_v^S \partial_r \right]  \left[ 1 - \partial_r \kappa_v^S \partial_r \right]
187  S^{n+1} & = & S^*  S^{n+1} & = & S^*
188    \label{eq-tDsC-salt}
189  \\  \\
190  %{b'}^{n} & = & b'(\theta^{n},S^{n},r)  %{b'}^{n} & = & b'(\theta^{n},S^{n},r)
191  %\partial_r {\phi'_{hyd}}^{n} & = & {-b'}^{n}  %\partial_r {\phi'_{hyd}}^{n} & = & {-b'}^{n}
192  %\\  %\\
193  {\phi'_{hyd}}^{n} & = & \int_{r'}^{R_o} b'(\theta^{n},S^{n},r) dr  {\phi'_{hyd}}^{n} & = & \int_{r'}^{R_o} b'(\theta^{n},S^{n},r) dr
194  \label{eq-rtd-hyd}  \label{eq-tDsC-hyd}
195  \\  \\
196  \vec{\bf v} ^{n+1}  \vec{\bf v} ^{n+1}
197  + \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}  + \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}
# Line 185  S^{n+1} & = & S^* Line 199  S^{n+1} & = & S^*
199  - \partial_r A_v \partial_r \vec{\bf v}^{n+1}  - \partial_r A_v \partial_r \vec{\bf v}^{n+1}
200  & = &  & = &
201  \vec{\bf v}^*  \vec{\bf v}^*
202  \label{eq-rtd-hmom}  \label{eq-tDsC-Hmom}
203  \\  \\
204  \epsilon_{fs} {\eta}^{n+1} + \Delta t  \epsilon_{fs} {\eta}^{n+1} + \Delta t
205  {\bf \nabla}_h \cdot \int_{R_{min}}^{R_o} \vec{\bf v}^{n+1} dr  {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o} \vec{\bf v}^{n+1} dr
206  & = &  & = &
207      \epsilon_{fs} {\eta}^{n} + \epsilon_{fw} \Delta_t (P-E)^{n}      \epsilon_{fs} {\eta}^{n} + \epsilon_{fw} \Delta_t (P-E)^{n}
208  \nonumber  \nonumber
209  \\  \\
210  % = \epsilon_{fs} {\eta}^{n} & + & \epsilon_{fw} \Delta_t (P-E)^{n}  % = \epsilon_{fs} {\eta}^{n} & + & \epsilon_{fw} \Delta_t (P-E)^{n}
211  \label{eq-rtd-eta}  \label{eq-tDsC-eta}
212  \\  \\
213  \epsilon_{nh} \left( \dot{r} ^{n+1}  \epsilon_{nh} \left( \dot{r} ^{n+1}
214  + \Delta t \partial_r {\phi'_{nh}} ^{n+1}  + \Delta t \partial_r {\phi'_{nh}} ^{n+1}
215  \right)  \right)
216  & = & \epsilon_{nh} \dot{r}^*  & = & \epsilon_{nh} \dot{r}^*
217  \label{eq-rtd-rdot}  \label{eq-tDsC-Vmom}
218  \\  \\
219  {\bf \nabla}_h \cdot \vec{\bf v}^{n+1} + \partial_r \dot{r}^{n+1}  {\bf \nabla}_h \cdot \vec{\bf v}^{n+1} + \partial_r \dot{r}^{n+1}
220  & = & 0  & = & 0
221  \label{eq-rtd-cont}  \label{eq-tDsC-cont}
222  \end{eqnarray}  \end{eqnarray}
223  where  where
224  \begin{eqnarray}  \begin{eqnarray}
# Line 228  written separately here. Line 242  written separately here.
242    
243  To ensure a second order time discretization for both  To ensure a second order time discretization for both
244  momentum and tracer,  momentum and tracer,
245  The "G" terms are "extrapolated" forward in time  The "{\it G}" terms are "extrapolated" forward in time
246  (Adams Bashforth time stepping)  (Adams Bashforth time stepping)
247  from the values computed at time step $n$ and $n-1$  from the values computed at time step $n$ and $n-1$
248  to the time $n+1/2$:  to the time $n+1/2$:
# Line 286  And Line 300  And
300  %\\  %\\
301  %\partial_r {\phi'_{hyd}}^{n+1/2} & = & {-b'}^{n+1/2}  %\partial_r {\phi'_{hyd}}^{n+1/2} & = & {-b'}^{n+1/2}
302  {\phi'_{hyd}}^{n+1/2} & = & \int_{r'}^{R_o} b'(\theta^{n+1/2},S^{n+1/2},r) dr  {\phi'_{hyd}}^{n+1/2} & = & \int_{r'}^{R_o} b'(\theta^{n+1/2},S^{n+1/2},r) dr
303  %\label{eq-rtd-hyd}  %\label{eq-tDsC-hyd}
304  \\  \\
305  \vec{\bf v} ^{n+1}  \vec{\bf v} ^{n+1}
306  + \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}  + \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}
# Line 294  And Line 308  And
308  - \partial_r A_v \partial_r \vec{\bf v}^{n+1}  - \partial_r A_v \partial_r \vec{\bf v}^{n+1}
309  & = &  & = &
310  \vec{\bf v}^*  \vec{\bf v}^*
311  %\label{eq-rtd-hmom}  %\label{eq-tDsC-Hmom}
312  \\  \\
313  \epsilon_{fs} {\eta}^{n+1} + \Delta t  \epsilon_{fs} {\eta}^{n+1} + \Delta t
314  {\bf \nabla}_h \cdot \int_{R_{min}}^{R_o} \vec{\bf v}^{n+1} dr  {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o} \vec{\bf v}^{n+1} dr
315  & = &  & = &
316  \epsilon_{fs} {\eta}^{n} + \epsilon_{fw} \Delta_t (P-E)^{n}  \epsilon_{fs} {\eta}^{n} + \epsilon_{fw} \Delta_t (P-E)^{n}
317  \\  \\
# Line 305  And Line 319  And
319  + \Delta t \partial_r {\phi'_{nh}} ^{n+1}  + \Delta t \partial_r {\phi'_{nh}} ^{n+1}
320  \right)  \right)
321  & = & \epsilon_{nh} \dot{r}^*  & = & \epsilon_{nh} \dot{r}^*
322  %\label{eq-rtd-rdot}  %\label{eq-tDsC-Vmom}
323  \\  \\
324  {\bf \nabla}_h \cdot \vec{\bf v}^{n+1} + \partial_r \dot{r}^{n+1}  {\bf \nabla}_h \cdot \vec{\bf v}^{n+1} + \partial_r \dot{r}^{n+1}
325  & = & 0  & = & 0
326  %\label{eq-rtd-cont}  %\label{eq-tDsC-cont}
327  \end{eqnarray*}  \end{eqnarray*}
328  with  with
329  \begin{eqnarray*}  \begin{eqnarray*}
# Line 325  with Line 339  with
339    
340  \subsection{Surface pressure}  \subsection{Surface pressure}
341    
342  Substituting \ref{eq-rtd-hmom} into \ref{eq-rtd-cont}, assuming  Substituting \ref{eq-tDsC-Hmom} into \ref{eq-tDsC-cont}, assuming
343  $\epsilon_{nh} = 0$ yields a Helmholtz equation for ${\eta}^{n+1}$:  $\epsilon_{nh} = 0$ yields a Helmholtz equation for ${\eta}^{n+1}$:
344  \begin{eqnarray}  \begin{eqnarray}
345  \epsilon_{fs} {\eta}^{n+1} -  \epsilon_{fs} {\eta}^{n+1} -
346  {\bf \nabla}_h \cdot \Delta t^2 (R_o-R_{min})  {\bf \nabla}_h \cdot \Delta t^2 (R_o-R_{fixed})
347  {\bf \nabla}_h b_s {\eta}^{n+1}  {\bf \nabla}_h b_s {\eta}^{n+1}
348  = {\eta}^*  = {\eta}^*
349  \label{solve_2d}  \label{eq-solve2D}
350  \end{eqnarray}  \end{eqnarray}
351  where  where
352  \begin{eqnarray}  \begin{eqnarray}
353  {\eta}^* = \epsilon_{fs} \: {\eta}^{n} -  {\eta}^* = \epsilon_{fs} \: {\eta}^{n} -
354  \Delta t {\bf \nabla}_h \cdot \int_{R_{min}}^{R_o} \vec{\bf v}^* dr  \Delta t {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o} \vec{\bf v}^* dr
355  \: + \: \epsilon_{fw} \Delta_t (P-E)^{n}  \: + \: \epsilon_{fw} \Delta_t (P-E)^{n}
356  \label{solve_2d_rhs}  \label{eq-solve2D_rhs}
357  \end{eqnarray}  \end{eqnarray}
358    
359  Once ${\eta}^{n+1}$ has been found substituting into \ref{eq-rtd-hmom}  Once ${\eta}^{n+1}$ has been found substituting into \ref{eq-tDsC-Hmom}
360  would yield $\vec{\bf v}^{n+1}$ if the model is hydrostatic  would yield $\vec{\bf v}^{n+1}$ if the model is hydrostatic
361  ($\epsilon_{nh}=0$):  ($\epsilon_{nh}=0$):
362  $$  $$
# Line 353  $$ Line 367  $$
367  This is known as the correction step. However, when the model is  This is known as the correction step. However, when the model is
368  non-hydrostatic ($\epsilon_{nh}=1$) we need an additional step and an  non-hydrostatic ($\epsilon_{nh}=1$) we need an additional step and an
369  additional equation for $\phi'_{nh}$. This is obtained by  additional equation for $\phi'_{nh}$. This is obtained by
370  substituting \ref{eq-rtd-hmom} and \ref{eq-rtd-rdot} into  substituting \ref{eq-tDsC-Hmom} and \ref{eq-tDsC-Vmom} into
371  \ref{eq-rtd-cont}:  \ref{eq-tDsC-cont}:
372  \begin{equation}  \begin{equation}
373  \left[ {\bf \nabla}_h^2 + \partial_{rr} \right] {\phi'_{nh}}^{n+1}  \left[ {\bf \nabla}_h^2 + \partial_{rr} \right] {\phi'_{nh}}^{n+1}
374  = \frac{1}{\Delta t} \left(  = \frac{1}{\Delta t} \left(
# Line 384  without any consequence on the solution. Line 398  without any consequence on the solution.
398  Regarding the implementation, all those computation are done  Regarding the implementation, all those computation are done
399  within the routine {\it SOLVE\_FOR\_PRESSURE} and its dependent  within the routine {\it SOLVE\_FOR\_PRESSURE} and its dependent
400  {\it CALL}s.  {\it CALL}s.
401  The standard method to solve the 2D elliptic problem (\ref{solve_2d})  The standard method to solve the 2D elliptic problem (\ref{eq-solve2D})
402  uses the conjugate gradient method (routine {\it CG2D}); The  uses the conjugate gradient method (routine {\it CG2D}); The
403  the solver matrix and conjugate gradient operator are only function  the solver matrix and conjugate gradient operator are only function
404  of the discretized domain and are therefore evaluated separately,  of the discretized domain and are therefore evaluated separately,
# Line 417  In the code, $\beta,\gamma$ are defined Line 431  In the code, $\beta,\gamma$ are defined
431  {\it implicSurfPress}, {\it implicDiv2DFlow}. They are read from  {\it implicSurfPress}, {\it implicDiv2DFlow}. They are read from
432  the main data file "{\it data}" and are set by default to 1,1.  the main data file "{\it data}" and are set by default to 1,1.
433    
434  Equations \ref{eq-rtd-hmom} and \ref{eq-rtd-eta} are modified as follows:  Equations \ref{eq-tDsC-Hmom} and \ref{eq-tDsC-eta} are modified as follows:
435  $$  $$
436  \frac{ \vec{\bf v}^{n+1} }{ \Delta t }  \frac{ \vec{\bf v}^{n+1} }{ \Delta t }
437  + {\bf \nabla}_h b_s [ \beta {\eta}^{n+1} + (1-\beta) {\eta}^{n} ]  + {\bf \nabla}_h b_s [ \beta {\eta}^{n+1} + (1-\beta) {\eta}^{n} ]
# Line 426  $$ Line 440  $$
440  $$  $$
441  $$  $$
442  \epsilon_{fs} \frac{ {\eta}^{n+1} - {\eta}^{n} }{ \Delta t}  \epsilon_{fs} \frac{ {\eta}^{n+1} - {\eta}^{n} }{ \Delta t}
443  + {\bf \nabla}_h \cdot \int_{R_{min}}^{R_o}  + {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o}
444  [ \gamma \vec{\bf v}^{n+1} + (1-\gamma) \vec{\bf v}^{n}] dr  [ \gamma \vec{\bf v}^{n+1} + (1-\gamma) \vec{\bf v}^{n}] dr
445  = \epsilon_{fw} (P-E)  = \epsilon_{fw} (P-E)
446  $$  $$
# Line 439  where: Line 453  where:
453  \\  \\
454  {\eta}^* & = &  {\eta}^* & = &
455  \epsilon_{fs} {\eta}^{n} + \epsilon_{fw} \Delta t (P-E)  \epsilon_{fs} {\eta}^{n} + \epsilon_{fw} \Delta t (P-E)
456  - \Delta t {\bf \nabla}_h \cdot \int_{R_{min}}^{R_o}  - \Delta t {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o}
457  [ \gamma \vec{\bf v}^* + (1-\gamma) \vec{\bf v}^{n}] dr  [ \gamma \vec{\bf v}^* + (1-\gamma) \vec{\bf v}^{n}] dr
458  \end{eqnarray*}  \end{eqnarray*}
459  \\  \\
# Line 447  In the hydrostatic case ($\epsilon_{nh}= Line 461  In the hydrostatic case ($\epsilon_{nh}=
461  this allow to find ${\eta}^{n+1}$, according to:  this allow to find ${\eta}^{n+1}$, according to:
462  $$  $$
463  \epsilon_{fs} {\eta}^{n+1} -  \epsilon_{fs} {\eta}^{n+1} -
464  {\bf \nabla}_h \cdot \beta\gamma \Delta t^2 b_s (R_o - R_{min})  {\bf \nabla}_h \cdot \beta\gamma \Delta t^2 b_s (R_o - R_{fixed})
465  {\bf \nabla}_h {\eta}^{n+1}  {\bf \nabla}_h {\eta}^{n+1}
466  = {\eta}^*  = {\eta}^*
467  $$  $$

Legend:
Removed from v.1.3  
changed lines
  Added in v.1.5

  ViewVC Help
Powered by ViewVC 1.1.22