263 |
\begin{eqnarray} |
\begin{eqnarray} |
264 |
u^{*} & = & u^{n} + \Delta t G_u^{(n+1/2)} \label{eq:ustar-backward-free-surface} \\ |
u^{*} & = & u^{n} + \Delta t G_u^{(n+1/2)} \label{eq:ustar-backward-free-surface} \\ |
265 |
v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-backward-free-surface} \\ |
v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-backward-free-surface} \\ |
266 |
\eta^* & = & \epsilon_{fs} \left( \eta^{n} + \Delta t (P-E) \right)- \Delta t |
\eta^* & = & \epsilon_{fs} \left( \eta^{n} + \Delta t (P-E) \right) |
267 |
\partial_x H \widehat{u^{*}} |
- \Delta t \left( \partial_x H \widehat{u^{*}} |
268 |
+ \partial_y H \widehat{v^{*}} |
+ \partial_y H \widehat{v^{*}} \right) |
269 |
\\ |
\\ |
270 |
\partial_x g H \partial_x \eta^{n+1} |
\partial_x g H \partial_x \eta^{n+1} |
271 |
& + & \partial_y g H \partial_y \eta^{n+1} |
& + & \partial_y g H \partial_y \eta^{n+1} |
425 |
\end{eqnarray} |
\end{eqnarray} |
426 |
where ${\cal L}_\tau^{-1}$ is the inverse of the operator |
where ${\cal L}_\tau^{-1}$ is the inverse of the operator |
427 |
\begin{equation} |
\begin{equation} |
428 |
{\cal L} = \left[ 1 + \Delta t \partial_r \kappa_v \partial_r \right] |
{\cal L}_\tau = \left[ 1 + \Delta t \partial_r \kappa_v \partial_r \right] |
429 |
\end{equation} |
\end{equation} |
430 |
Equation \ref{eq:taustar-implicit} looks exactly as \ref{eq:taustar} |
Equation \ref{eq:taustar-implicit} looks exactly as \ref{eq:taustar} |
431 |
while \ref{eq:tau-n+1-implicit} involves an operator or matrix |
while \ref{eq:tau-n+1-implicit} involves an operator or matrix |
613 |
allowing the use of the most recent velocities to compute |
allowing the use of the most recent velocities to compute |
614 |
the advection terms. Once the thermodynamics fields are |
the advection terms. Once the thermodynamics fields are |
615 |
updated, the hydrostatic pressure is computed |
updated, the hydrostatic pressure is computed |
616 |
to step forwrad the dynamics. |
to step forward the dynamics. |
617 |
Note that the pressure gradient must also be taken out of the |
Note that the pressure gradient must also be taken out of the |
618 |
Adams-Bashforth extrapolation. Also, retaining the integer time-levels, |
Adams-Bashforth extrapolation. Also, retaining the integer time-levels, |
619 |
$n$ and $n+1$, does not give a user the sense of where variables are |
$n$ and $n+1$, does not give a user the sense of where variables are |
718 |
The non-hydrostatic formulation re-introduces the full vertical |
The non-hydrostatic formulation re-introduces the full vertical |
719 |
momentum equation and requires the solution of a 3-D elliptic |
momentum equation and requires the solution of a 3-D elliptic |
720 |
equations for non-hydrostatic pressure perturbation. We still |
equations for non-hydrostatic pressure perturbation. We still |
721 |
intergrate vertically for the hydrostatic pressure and solve a 2-D |
integrate vertically for the hydrostatic pressure and solve a 2-D |
722 |
elliptic equation for the surface pressure/elevation for this reduces |
elliptic equation for the surface pressure/elevation for this reduces |
723 |
the amount of work needed to solve for the non-hydrostatic pressure. |
the amount of work needed to solve for the non-hydrostatic pressure. |
724 |
|
|
950 |
\frac{ \vec{\bf v}^{n+1} }{ \Delta t } |
\frac{ \vec{\bf v}^{n+1} }{ \Delta t } |
951 |
+ {\bf \nabla}_h b_s [ \beta {\eta}^{n+1} + (1-\beta) {\eta}^{n} ] |
+ {\bf \nabla}_h b_s [ \beta {\eta}^{n+1} + (1-\beta) {\eta}^{n} ] |
952 |
+ \epsilon_{nh} {\bf \nabla}_h {\phi'_{nh}}^{n+1} |
+ \epsilon_{nh} {\bf \nabla}_h {\phi'_{nh}}^{n+1} |
953 |
= \frac{ \vec{\bf v}^* }{ \Delta t } |
= \frac{ \vec{\bf v}^{n} }{ \Delta t } |
954 |
|
+ \vec{\bf G}_{\vec{\bf v}} ^{(n+1/2)} |
955 |
|
+ {\bf \nabla}_h {\phi'_{hyd}}^{(n+1/2)} |
956 |
\end{eqnarray*} |
\end{eqnarray*} |
957 |
\begin{eqnarray} |
\begin{eqnarray} |
958 |
\epsilon_{fs} \frac{ {\eta}^{n+1} - {\eta}^{n} }{ \Delta t} |
\epsilon_{fs} \frac{ {\eta}^{n+1} - {\eta}^{n} }{ \Delta t} |
961 |
= \epsilon_{fw} (P-E) |
= \epsilon_{fw} (P-E) |
962 |
\label{eq:eta-n+1-CrankNick} |
\label{eq:eta-n+1-CrankNick} |
963 |
\end{eqnarray} |
\end{eqnarray} |
964 |
where: |
We set |
965 |
\begin{eqnarray*} |
\begin{eqnarray*} |
966 |
\vec{\bf v}^* & = & |
\vec{\bf v}^* & = & |
967 |
\vec{\bf v} ^{n} + \Delta t \vec{\bf G}_{\vec{\bf v}} ^{(n+1/2)} |
\vec{\bf v} ^{n} + \Delta t \vec{\bf G}_{\vec{\bf v}} ^{(n+1/2)} |