10 |
terms are described first, afterwards the schemes that apply to |
terms are described first, afterwards the schemes that apply to |
11 |
passive and dynamically active tracers are described. |
passive and dynamically active tracers are described. |
12 |
|
|
13 |
|
\input{part2/notation} |
14 |
|
|
15 |
\section{Time-stepping} |
\section{Time-stepping} |
16 |
\begin{rawhtml} |
\begin{rawhtml} |
609 |
(\theta^*,S^*) & = & (\theta^{n},S^{n}) + \Delta t G_{\theta,S}^{(n+1/2)} |
(\theta^*,S^*) & = & (\theta^{n},S^{n}) + \Delta t G_{\theta,S}^{(n+1/2)} |
610 |
\label{eq:tstar-staggered} \\ |
\label{eq:tstar-staggered} \\ |
611 |
(\theta^{n+1},S^{n+1}) & = & {\cal L}^{-1}_{\theta,S} (\theta^*,S^*) |
(\theta^{n+1},S^{n+1}) & = & {\cal L}^{-1}_{\theta,S} (\theta^*,S^*) |
612 |
\label{eq:t-n+1-staggered} \\ |
\label{eq:t-n+1-staggered} |
613 |
\end{eqnarray} |
\end{eqnarray} |
614 |
The corresponding calling tree is given in |
The corresponding calling tree is given in |
615 |
\ref{fig:call-tree-adams-bashforth-staggered}. |
\ref{fig:call-tree-adams-bashforth-staggered}. |
692 |
\frac{1}{\Delta t} v^{n+1} + g \partial_y \eta^{n+1} + \partial_y \phi_{nh}^{n+1} |
\frac{1}{\Delta t} v^{n+1} + g \partial_y \eta^{n+1} + \partial_y \phi_{nh}^{n+1} |
693 |
& = & \frac{1}{\Delta t} v^{n} + G_v^{(n+1/2)} \label{eq:discrete-time-v-nh} \\ |
& = & \frac{1}{\Delta t} v^{n} + G_v^{(n+1/2)} \label{eq:discrete-time-v-nh} \\ |
694 |
\frac{1}{\Delta t} w^{n+1} + \partial_r \phi_{nh}^{n+1} |
\frac{1}{\Delta t} w^{n+1} + \partial_r \phi_{nh}^{n+1} |
695 |
& = & \frac{1}{\Delta t} w^{n} + G_w^{(n+1/2)} \label{eq:discrete-time-w-nh} \\ |
& = & \frac{1}{\Delta t} w^{n} + G_w^{(n+1/2)} \label{eq:discrete-time-w-nh} |
696 |
\end{eqnarray} |
\end{eqnarray} |
697 |
which must satisfy the discrete-in-time depth integrated continuity, |
which must satisfy the discrete-in-time depth integrated continuity, |
698 |
equation~\ref{eq:discrete-time-backward-free-surface} and the local continuity equation |
equation~\ref{eq:discrete-time-backward-free-surface} and the local continuity equation |
796 |
\begin{eqnarray} |
\begin{eqnarray} |
797 |
{\eta}^* = \epsilon_{fs} \: {\eta}^{n} - |
{\eta}^* = \epsilon_{fs} \: {\eta}^{n} - |
798 |
\Delta t {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o} \vec{\bf v}^* dr |
\Delta t {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o} \vec{\bf v}^* dr |
799 |
\: + \: \epsilon_{fw} \Delta_t (P-E)^{n} |
\: + \: \epsilon_{fw} \Delta t (P-E)^{n} |
800 |
\label{eq-solve2D_rhs} |
\label{eq-solve2D_rhs} |
801 |
\end{eqnarray} |
\end{eqnarray} |
802 |
|
|
803 |
\fbox{ \begin{minipage}{4.75in} |
\fbox{ \begin{minipage}{4.75in} |
804 |
{\em S/R SOLVE\_FOR\_PRESSURE} ({\em solve\_for\_pressure.F}) |
{\em S/R SOLVE\_FOR\_PRESSURE} ({\em solve\_for\_pressure.F}) |
805 |
|
|
806 |
$u^*$: {\bf GuNm1} ({\em DYNVARS.h}) |
$u^*$: {\bf gU} ({\em DYNVARS.h}) |
807 |
|
|
808 |
$v^*$: {\bf GvNm1} ({\em DYNVARS.h}) |
$v^*$: {\bf gV} ({\em DYNVARS.h}) |
809 |
|
|
810 |
$\eta^*$: {\bf cg2d\_b} (\em SOLVE\_FOR\_PRESSURE.h) |
$\eta^*$: {\bf cg2d\_b} (\em SOLVE\_FOR\_PRESSURE.h) |
811 |
|
|
815 |
|
|
816 |
|
|
817 |
Once ${\eta}^{n+1}$ has been found, substituting into |
Once ${\eta}^{n+1}$ has been found, substituting into |
818 |
\ref{eq:discrete-time-u,eq:discrete-time-v} yields $\vec{\bf v}^{n+1}$ if the model is |
\ref{eq:discrete-time-u}, \ref{eq:discrete-time-v} yields $\vec{\bf v}^{n+1}$ |
819 |
hydrostatic ($\epsilon_{nh}=0$): |
if the model is hydrostatic ($\epsilon_{nh}=0$): |
820 |
$$ |
$$ |
821 |
\vec{\bf v}^{n+1} = \vec{\bf v}^{*} |
\vec{\bf v}^{n+1} = \vec{\bf v}^{*} |
822 |
- \Delta t {\bf \nabla}_h b_s {\eta}^{n+1} |
- \Delta t {\bf \nabla}_h b_s {\eta}^{n+1} |
857 |
|
|
858 |
$\eta^{n+1}$: {\bf etaN} (\em DYNVARS.h) |
$\eta^{n+1}$: {\bf etaN} (\em DYNVARS.h) |
859 |
|
|
860 |
$\phi_{nh}^{n+1}$: {\bf phi\_nh} (\em DYNVARS.h) |
$\phi_{nh}^{n+1}$: {\bf phi\_nh} (\em NH\_VARS.h) |
861 |
|
|
862 |
$u^*$: {\bf GuNm1} ({\em DYNVARS.h}) |
$u^*$: {\bf gU} ({\em DYNVARS.h}) |
863 |
|
|
864 |
$v^*$: {\bf GvNm1} ({\em DYNVARS.h}) |
$v^*$: {\bf gV} ({\em DYNVARS.h}) |
865 |
|
|
866 |
$u^{n+1}$: {\bf uVel} ({\em DYNVARS.h}) |
$u^{n+1}$: {\bf uVel} ({\em DYNVARS.h}) |
867 |
|
|