10 |
terms are described first, afterwards the schemes that apply to |
terms are described first, afterwards the schemes that apply to |
11 |
passive and dynamically active tracers are described. |
passive and dynamically active tracers are described. |
12 |
|
|
13 |
|
\input{part2/notation} |
14 |
|
|
15 |
\section{Time-stepping} |
\section{Time-stepping} |
16 |
\begin{rawhtml} |
\begin{rawhtml} |
226 |
of the free-surface equation which can be written: |
of the free-surface equation which can be written: |
227 |
\begin{equation} |
\begin{equation} |
228 |
\partial_t \eta + \partial_x H \widehat{u} + \partial_y H \widehat{v} = P-E+R |
\partial_t \eta + \partial_x H \widehat{u} + \partial_y H \widehat{v} = P-E+R |
229 |
\label{eq:linear-free-surface=P-E+R} |
\label{eq:linear-free-surface=P-E} |
230 |
\end{equation} |
\end{equation} |
231 |
which differs from the depth integrated continuity equation with |
which differs from the depth integrated continuity equation with |
232 |
rigid-lid (\ref{eq:rigid-lid-continuity}) by the time-dependent term |
rigid-lid (\ref{eq:rigid-lid-continuity}) by the time-dependent term |
234 |
|
|
235 |
Equation \ref{eq:discrete-time-cont-rigid-lid} in the rigid-lid |
Equation \ref{eq:discrete-time-cont-rigid-lid} in the rigid-lid |
236 |
pressure method is then replaced by the time discretization of |
pressure method is then replaced by the time discretization of |
237 |
\ref{eq:linear-free-surface=P-E+R} which is: |
\ref{eq:linear-free-surface=P-E} which is: |
238 |
\begin{equation} |
\begin{equation} |
239 |
\eta^{n+1} |
\eta^{n+1} |
240 |
+ \Delta t \partial_x H \widehat{u^{n+1}} |
+ \Delta t \partial_x H \widehat{u^{n+1}} |
241 |
+ \Delta t \partial_y H \widehat{v^{n+1}} |
+ \Delta t \partial_y H \widehat{v^{n+1}} |
242 |
= |
= |
243 |
\eta^{n} |
\eta^{n} |
244 |
+ \Delta t ( P - E + R ) |
+ \Delta t ( P - E ) |
245 |
\label{eq:discrete-time-backward-free-surface} |
\label{eq:discrete-time-backward-free-surface} |
246 |
\end{equation} |
\end{equation} |
247 |
where the use of flow at time level $n+1$ makes the method implicit |
where the use of flow at time level $n+1$ makes the method implicit |
256 |
\begin{eqnarray} |
\begin{eqnarray} |
257 |
u^{*} & = & u^{n} + \Delta t G_u^{(n+1/2)} \label{eq:ustar-backward-free-surface} \\ |
u^{*} & = & u^{n} + \Delta t G_u^{(n+1/2)} \label{eq:ustar-backward-free-surface} \\ |
258 |
v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-backward-free-surface} \\ |
v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-backward-free-surface} \\ |
259 |
\eta^* & = & \epsilon_{fs} \left( \eta^{n} +P-E+R \right)- \Delta t |
\eta^* & = & \epsilon_{fs} \left( \eta^{n} + \Delta t (P-E) \right)- \Delta t |
260 |
\partial_x H \widehat{u^{*}} |
\partial_x H \widehat{u^{*}} |
261 |
+ \partial_y H \widehat{v^{*}} |
+ \partial_y H \widehat{v^{*}} |
262 |
\\ |
\\ |
263 |
\partial_x g H \partial_x \eta^{n+1} |
\partial_x g H \partial_x \eta^{n+1} |
264 |
+ \partial_y g H \partial_y \eta^{n+1} |
& + & \partial_y g H \partial_y \eta^{n+1} |
265 |
- \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2} |
- \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2} |
266 |
& = & |
= |
267 |
- \frac{\eta^*}{\Delta t^2} |
- \frac{\eta^*}{\Delta t^2} |
268 |
\label{eq:elliptic-backward-free-surface} |
\label{eq:elliptic-backward-free-surface} |
269 |
\\ |
\\ |
443 |
\>\>\> GAD\_CALC\_RHS \` $G_\theta^n = G_\theta( u, \theta^n )$ (\ref{eq:Gt-n-sync})\\ |
\>\>\> GAD\_CALC\_RHS \` $G_\theta^n = G_\theta( u, \theta^n )$ (\ref{eq:Gt-n-sync})\\ |
444 |
\>\>\> EXTERNAL\_FORCING \` $G_\theta^n = G_\theta^n + {\cal Q}$ \\ |
\>\>\> EXTERNAL\_FORCING \` $G_\theta^n = G_\theta^n + {\cal Q}$ \\ |
445 |
\>\>\> ADAMS\_BASHFORTH2 \` $G_\theta^{(n+1/2)}$ (\ref{eq:Gt-n+5-sync}) \\ |
\>\>\> ADAMS\_BASHFORTH2 \` $G_\theta^{(n+1/2)}$ (\ref{eq:Gt-n+5-sync}) \\ |
446 |
\>\> TIMESTEP\_TRACER \` $\tau^*$ (\ref{eq:tstar-sync}) \\ |
\>\> TIMESTEP\_TRACER \` $\theta^*$ (\ref{eq:tstar-sync}) \\ |
447 |
\>\> IMPLDIFF \` $\tau^{(n+1)}$ (\ref{eq:t-n+1-sync}) \\ |
\>\> IMPLDIFF \` $\theta^{(n+1)}$ (\ref{eq:t-n+1-sync}) \\ |
448 |
\> DYNAMICS \\ |
\> DYNAMICS \\ |
449 |
\>\> CALC\_PHI\_HYD \` $\phi_{hyd}^n$ (\ref{eq:phi-hyd-sync}) \\ |
\>\> CALC\_PHI\_HYD \` $\phi_{hyd}^n$ (\ref{eq:phi-hyd-sync}) \\ |
450 |
\>\> MOM\_FLUXFORM or MOM\_VECINV \` $G_{\vec{\bf v}}^n$ (\ref{eq:Gv-n-sync})\\ |
\>\> MOM\_FLUXFORM or MOM\_VECINV \` $G_{\vec{\bf v}}^n$ (\ref{eq:Gv-n-sync})\\ |
466 |
Calling tree for the overall synchronous algorithm using |
Calling tree for the overall synchronous algorithm using |
467 |
Adams-Bashforth time-stepping. |
Adams-Bashforth time-stepping. |
468 |
The place where the model geometry |
The place where the model geometry |
469 |
({\em hFac} factors) is updated is added here but is only relevant |
({\bf hFac} factors) is updated is added here but is only relevant |
470 |
for the non-linear free-surface algorithm. |
for the non-linear free-surface algorithm. |
471 |
For completeness, the external forcing, |
For completeness, the external forcing, |
472 |
ocean and atmospheric physics have been added, although they are mainly |
ocean and atmospheric physics have been added, although they are mainly |
548 |
The hydrostatic pressure/geo-potential $\phi_{hyd}$ is evaluated directly |
The hydrostatic pressure/geo-potential $\phi_{hyd}$ is evaluated directly |
549 |
at time level $n$ (vertical arrows) and used with the extrapolated tendencies |
at time level $n$ (vertical arrows) and used with the extrapolated tendencies |
550 |
to step forward the flow variables from $n-1/2$ to $n+1/2$ (solid arc-arrow). |
to step forward the flow variables from $n-1/2$ to $n+1/2$ (solid arc-arrow). |
551 |
The implicit-in-time operator ${\cal L_{u,v}}$ (vertical arrows) is |
The implicit-in-time operator ${\cal L}_{\bf u,v}$ (vertical arrows) is |
552 |
then applied to the previous estimation of the the flow field ($*$-variables) |
then applied to the previous estimation of the the flow field ($*$-variables) |
553 |
and yields to the two velocity components $u,v$ at time level $n+1/2$. |
and yields to the two velocity components $u,v$ at time level $n+1/2$. |
554 |
These are then used to calculate the advection term (dashed arc-arrow) |
These are then used to calculate the advection term (dashed arc-arrow) |
576 |
allowing the use of the most recent velocities to compute |
allowing the use of the most recent velocities to compute |
577 |
the advection terms. Once the thermodynamics fields are |
the advection terms. Once the thermodynamics fields are |
578 |
updated, the hydrostatic pressure is computed |
updated, the hydrostatic pressure is computed |
579 |
to step frowrad the dynamics |
to step forwrad the dynamics. |
580 |
Note that the pressure gradient must also be taken out of the |
Note that the pressure gradient must also be taken out of the |
581 |
Adams-Bashforth extrapolation. Also, retaining the integer time-levels, |
Adams-Bashforth extrapolation. Also, retaining the integer time-levels, |
582 |
$n$ and $n+1$, does not give a user the sense of where variables are |
$n$ and $n+1$, does not give a user the sense of where variables are |
584 |
\ref{eq:Gt-n-sync} to \ref{eq:v-n+1-sync}, annotating the |
\ref{eq:Gt-n-sync} to \ref{eq:v-n+1-sync}, annotating the |
585 |
position in time of variables appropriately: |
position in time of variables appropriately: |
586 |
\begin{eqnarray} |
\begin{eqnarray} |
587 |
|
\phi^{n}_{hyd} & = & \int b(\theta^{n},S^{n}) dr |
588 |
|
\label{eq:phi-hyd-staggered} \\ |
589 |
\vec{\bf G}_{\vec{\bf v}}^{n-1/2} & = & \vec{\bf G}_{\vec{\bf v}} ( \vec{\bf v}^{n-1/2} ) |
\vec{\bf G}_{\vec{\bf v}}^{n-1/2} & = & \vec{\bf G}_{\vec{\bf v}} ( \vec{\bf v}^{n-1/2} ) |
590 |
\label{eq:Gv-n-staggered} \\ |
\label{eq:Gv-n-staggered} \\ |
591 |
\vec{\bf G}_{\vec{\bf v}}^{(n)} & = & (3/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n-1/2} - (1/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n-3/2} |
\vec{\bf G}_{\vec{\bf v}}^{(n)} & = & (3/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n-1/2} - (1/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n-3/2} |
592 |
\label{eq:Gv-n+5-staggered} \\ |
\label{eq:Gv-n+5-staggered} \\ |
|
\phi^{n}_{hyd} & = & \int b(\theta^{n},S^{n}) dr |
|
|
\label{eq:phi-hyd-staggered} \\ |
|
593 |
\vec{\bf v}^{*} & = & \vec{\bf v}^{n-1/2} + \Delta t \left( \vec{\bf G}_{\vec{\bf v}}^{(n)} - \nabla \phi_{hyd}^{n} \right) |
\vec{\bf v}^{*} & = & \vec{\bf v}^{n-1/2} + \Delta t \left( \vec{\bf G}_{\vec{\bf v}}^{(n)} - \nabla \phi_{hyd}^{n} \right) |
594 |
\label{eq:vstar-staggered} \\ |
\label{eq:vstar-staggered} \\ |
595 |
\vec{\bf v}^{**} & = & {\cal L}_{\vec{\bf v}}^{-1} ( \vec{\bf v}^* ) |
\vec{\bf v}^{**} & = & {\cal L}_{\vec{\bf v}}^{-1} ( \vec{\bf v}^* ) |
609 |
(\theta^*,S^*) & = & (\theta^{n},S^{n}) + \Delta t G_{\theta,S}^{(n+1/2)} |
(\theta^*,S^*) & = & (\theta^{n},S^{n}) + \Delta t G_{\theta,S}^{(n+1/2)} |
610 |
\label{eq:tstar-staggered} \\ |
\label{eq:tstar-staggered} \\ |
611 |
(\theta^{n+1},S^{n+1}) & = & {\cal L}^{-1}_{\theta,S} (\theta^*,S^*) |
(\theta^{n+1},S^{n+1}) & = & {\cal L}^{-1}_{\theta,S} (\theta^*,S^*) |
612 |
\label{eq:t-n+1-staggered} \\ |
\label{eq:t-n+1-staggered} |
613 |
\end{eqnarray} |
\end{eqnarray} |
614 |
The corresponding calling tree is given in |
The corresponding calling tree is given in |
615 |
\ref{fig:call-tree-adams-bashforth-staggered}. |
\ref{fig:call-tree-adams-bashforth-staggered}. |
616 |
The staggered algorithm is activated with the run-time flag |
The staggered algorithm is activated with the run-time flag |
617 |
{\bf staggerTimeStep=.TRUE.} in parameter file {\em data}, |
{\bf staggerTimeStep}{\em=.TRUE.} in parameter file {\em data}, |
618 |
namelist {\em PARM01}. |
namelist {\em PARM01}. |
619 |
|
|
620 |
\begin{figure} |
\begin{figure} |
644 |
(\ref{eq:Gt-n-staggered})\\ |
(\ref{eq:Gt-n-staggered})\\ |
645 |
\>\>\> EXTERNAL\_FORCING \` $G_\theta^n = G_\theta^n + {\cal Q}$ \\ |
\>\>\> EXTERNAL\_FORCING \` $G_\theta^n = G_\theta^n + {\cal Q}$ \\ |
646 |
\>\>\> ADAMS\_BASHFORTH2 \` $G_\theta^{(n+1/2)}$ (\ref{eq:Gt-n+5-staggered}) \\ |
\>\>\> ADAMS\_BASHFORTH2 \` $G_\theta^{(n+1/2)}$ (\ref{eq:Gt-n+5-staggered}) \\ |
647 |
\>\> TIMESTEP\_TRACER \` $\tau^*$ (\ref{eq:tstar-staggered}) \\ |
\>\> TIMESTEP\_TRACER \` $\theta^*$ (\ref{eq:tstar-staggered}) \\ |
648 |
\>\> IMPLDIFF \` $\tau^{(n+1)}$ (\ref{eq:t-n+1-staggered}) \\ |
\>\> IMPLDIFF \` $\theta^{(n+1)}$ (\ref{eq:t-n+1-staggered}) \\ |
649 |
\> TRACERS\_CORRECTION\_STEP \\ |
\> TRACERS\_CORRECTION\_STEP \\ |
650 |
\>\> CYCLE\_TRACER \` $\theta^{n+1}$ \\ |
\>\> CYCLE\_TRACER \` $\theta^{n+1}$ \\ |
651 |
\>\> FILTER \` Shapiro Filter, Zonal Filter (FFT) \\ |
\>\> FILTER \` Shapiro Filter, Zonal Filter (FFT) \\ |
655 |
Calling tree for the overall staggered algorithm using |
Calling tree for the overall staggered algorithm using |
656 |
Adams-Bashforth time-stepping. |
Adams-Bashforth time-stepping. |
657 |
The place where the model geometry |
The place where the model geometry |
658 |
({\em hFac} factors) is updated is added here but is only relevant |
({\bf hFac} factors) is updated is added here but is only relevant |
659 |
for the non-linear free-surface algorithm. |
for the non-linear free-surface algorithm. |
660 |
} |
} |
661 |
\label{fig:call-tree-adams-bashforth-staggered} |
\label{fig:call-tree-adams-bashforth-staggered} |
692 |
\frac{1}{\Delta t} v^{n+1} + g \partial_y \eta^{n+1} + \partial_y \phi_{nh}^{n+1} |
\frac{1}{\Delta t} v^{n+1} + g \partial_y \eta^{n+1} + \partial_y \phi_{nh}^{n+1} |
693 |
& = & \frac{1}{\Delta t} v^{n} + G_v^{(n+1/2)} \label{eq:discrete-time-v-nh} \\ |
& = & \frac{1}{\Delta t} v^{n} + G_v^{(n+1/2)} \label{eq:discrete-time-v-nh} \\ |
694 |
\frac{1}{\Delta t} w^{n+1} + \partial_r \phi_{nh}^{n+1} |
\frac{1}{\Delta t} w^{n+1} + \partial_r \phi_{nh}^{n+1} |
695 |
& = & \frac{1}{\Delta t} w^{n} + G_w^{(n+1/2)} \label{eq:discrete-time-w-nh} \\ |
& = & \frac{1}{\Delta t} w^{n} + G_w^{(n+1/2)} \label{eq:discrete-time-w-nh} |
696 |
\end{eqnarray} |
\end{eqnarray} |
697 |
which must satisfy the discrete-in-time depth integrated continuity, |
which must satisfy the discrete-in-time depth integrated continuity, |
698 |
equation~\ref{eq:discrete-time-backward-free-surface} and the local continuity equation |
equation~\ref{eq:discrete-time-backward-free-surface} and the local continuity equation |
776 |
|
|
777 |
|
|
778 |
\section{Variants on the Free Surface} |
\section{Variants on the Free Surface} |
779 |
|
\label{sect:free-surface} |
780 |
|
|
781 |
We now describe the various formulations of the free-surface that |
We now describe the various formulations of the free-surface that |
782 |
include non-linear forms, implicit in time using Crank-Nicholson, |
include non-linear forms, implicit in time using Crank-Nicholson, |
796 |
\begin{eqnarray} |
\begin{eqnarray} |
797 |
{\eta}^* = \epsilon_{fs} \: {\eta}^{n} - |
{\eta}^* = \epsilon_{fs} \: {\eta}^{n} - |
798 |
\Delta t {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o} \vec{\bf v}^* dr |
\Delta t {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o} \vec{\bf v}^* dr |
799 |
\: + \: \epsilon_{fw} \Delta_t (P-E)^{n} |
\: + \: \epsilon_{fw} \Delta t (P-E)^{n} |
800 |
\label{eq-solve2D_rhs} |
\label{eq-solve2D_rhs} |
801 |
\end{eqnarray} |
\end{eqnarray} |
802 |
|
|
803 |
\fbox{ \begin{minipage}{4.75in} |
\fbox{ \begin{minipage}{4.75in} |
804 |
{\em S/R SOLVE\_FOR\_PRESSURE} ({\em solve\_for\_pressure.F}) |
{\em S/R SOLVE\_FOR\_PRESSURE} ({\em solve\_for\_pressure.F}) |
805 |
|
|
806 |
$u^*$: {\bf GuNm1} ({\em DYNVARS.h}) |
$u^*$: {\bf gU} ({\em DYNVARS.h}) |
807 |
|
|
808 |
$v^*$: {\bf GvNm1} ({\em DYNVARS.h}) |
$v^*$: {\bf gV} ({\em DYNVARS.h}) |
809 |
|
|
810 |
$\eta^*$: {\bf cg2d\_b} (\em SOLVE\_FOR\_PRESSURE.h) |
$\eta^*$: {\bf cg2d\_b} (\em SOLVE\_FOR\_PRESSURE.h) |
811 |
|
|
815 |
|
|
816 |
|
|
817 |
Once ${\eta}^{n+1}$ has been found, substituting into |
Once ${\eta}^{n+1}$ has been found, substituting into |
818 |
\ref{eq:discrete-time-u,eq:discrete-time-v} yields $\vec{\bf v}^{n+1}$ if the model is |
\ref{eq:discrete-time-u}, \ref{eq:discrete-time-v} yields $\vec{\bf v}^{n+1}$ |
819 |
hydrostatic ($\epsilon_{nh}=0$): |
if the model is hydrostatic ($\epsilon_{nh}=0$): |
820 |
$$ |
$$ |
821 |
\vec{\bf v}^{n+1} = \vec{\bf v}^{*} |
\vec{\bf v}^{n+1} = \vec{\bf v}^{*} |
822 |
- \Delta t {\bf \nabla}_h b_s {\eta}^{n+1} |
- \Delta t {\bf \nabla}_h b_s {\eta}^{n+1} |
857 |
|
|
858 |
$\eta^{n+1}$: {\bf etaN} (\em DYNVARS.h) |
$\eta^{n+1}$: {\bf etaN} (\em DYNVARS.h) |
859 |
|
|
860 |
$\phi_{nh}^{n+1}$: {\bf phi\_nh} (\em DYNVARS.h) |
$\phi_{nh}^{n+1}$: {\bf phi\_nh} (\em NH\_VARS.h) |
861 |
|
|
862 |
$u^*$: {\bf GuNm1} ({\em DYNVARS.h}) |
$u^*$: {\bf gU} ({\em DYNVARS.h}) |
863 |
|
|
864 |
$v^*$: {\bf GvNm1} ({\em DYNVARS.h}) |
$v^*$: {\bf gV} ({\em DYNVARS.h}) |
865 |
|
|
866 |
$u^{n+1}$: {\bf uVel} ({\em DYNVARS.h}) |
$u^{n+1}$: {\bf uVel} ({\em DYNVARS.h}) |
867 |
|
|
889 |
|
|
890 |
|
|
891 |
\subsection{Crank-Nickelson barotropic time stepping} |
\subsection{Crank-Nickelson barotropic time stepping} |
892 |
|
\label{sect:freesurf-CrankNick} |
893 |
|
|
894 |
The full implicit time stepping described previously is |
The full implicit time stepping described previously is |
895 |
unconditionally stable but damps the fast gravity waves, resulting in |
unconditionally stable but damps the fast gravity waves, resulting in |
904 |
corresponds to the forward - backward scheme that conserves energy but is |
corresponds to the forward - backward scheme that conserves energy but is |
905 |
only stable for small time steps.\\ |
only stable for small time steps.\\ |
906 |
In the code, $\beta,\gamma$ are defined as parameters, respectively |
In the code, $\beta,\gamma$ are defined as parameters, respectively |
907 |
{\it implicSurfPress}, {\it implicDiv2DFlow}. They are read from |
{\bf implicSurfPress}, {\bf implicDiv2DFlow}. They are read from |
908 |
the main data file "{\it data}" and are set by default to 1,1. |
the main parameter file "{\em data}" and are set by default to 1,1. |
909 |
|
|
910 |
Equations \ref{eq:ustar-backward-free-surface} -- |
Equations \ref{eq:ustar-backward-free-surface} -- |
911 |
\ref{eq:vn+1-backward-free-surface} are modified as follows: |
\ref{eq:vn+1-backward-free-surface} are modified as follows: |
912 |
$$ |
\begin{eqnarray*} |
913 |
\frac{ \vec{\bf v}^{n+1} }{ \Delta t } |
\frac{ \vec{\bf v}^{n+1} }{ \Delta t } |
914 |
+ {\bf \nabla}_h b_s [ \beta {\eta}^{n+1} + (1-\beta) {\eta}^{n} ] |
+ {\bf \nabla}_h b_s [ \beta {\eta}^{n+1} + (1-\beta) {\eta}^{n} ] |
915 |
+ \epsilon_{nh} {\bf \nabla}_h {\phi'_{nh}}^{n+1} |
+ \epsilon_{nh} {\bf \nabla}_h {\phi'_{nh}}^{n+1} |
916 |
= \frac{ \vec{\bf v}^* }{ \Delta t } |
= \frac{ \vec{\bf v}^* }{ \Delta t } |
917 |
$$ |
\end{eqnarray*} |
918 |
$$ |
\begin{eqnarray} |
919 |
\epsilon_{fs} \frac{ {\eta}^{n+1} - {\eta}^{n} }{ \Delta t} |
\epsilon_{fs} \frac{ {\eta}^{n+1} - {\eta}^{n} }{ \Delta t} |
920 |
+ {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o} |
+ {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o} |
921 |
[ \gamma \vec{\bf v}^{n+1} + (1-\gamma) \vec{\bf v}^{n}] dr |
[ \gamma \vec{\bf v}^{n+1} + (1-\gamma) \vec{\bf v}^{n}] dr |
922 |
= \epsilon_{fw} (P-E) |
= \epsilon_{fw} (P-E) |
923 |
$$ |
\label{eq:eta-n+1-CrankNick} |
924 |
|
\end{eqnarray} |
925 |
where: |
where: |
926 |
\begin{eqnarray*} |
\begin{eqnarray*} |
927 |
\vec{\bf v}^* & = & |
\vec{\bf v}^* & = & |
943 |
{\bf \nabla}_h {\eta}^{n+1} |
{\bf \nabla}_h {\eta}^{n+1} |
944 |
= {\eta}^* |
= {\eta}^* |
945 |
$$ |
$$ |
946 |
and then to compute (correction step): |
and then to compute ({\em CORRECTION\_STEP}): |
947 |
$$ |
$$ |
948 |
\vec{\bf v}^{n+1} = \vec{\bf v}^{*} |
\vec{\bf v}^{n+1} = \vec{\bf v}^{*} |
949 |
- \beta \Delta t {\bf \nabla}_h b_s {\eta}^{n+1} |
- \beta \Delta t {\bf \nabla}_h b_s {\eta}^{n+1} |
950 |
$$ |
$$ |
951 |
|
|
952 |
The non-hydrostatic part is solved as described previously. |
%The non-hydrostatic part is solved as described previously. |
953 |
|
|
954 |
Note that: |
\noindent |
955 |
|
Notes: |
956 |
\begin{enumerate} |
\begin{enumerate} |
957 |
|
\item The RHS term of equation \ref{eq:eta-n+1-CrankNick} |
958 |
|
corresponds the contribution of fresh water flux (P-E) |
959 |
|
to the free-surface variations ($\epsilon_{fw}=1$, |
960 |
|
{\bf useRealFreshWater}{\em=TRUE} in parameter file {\em data}). |
961 |
|
In order to remain consistent with the tracer equation, specially in |
962 |
|
the non-linear free-surface formulation, this term is also |
963 |
|
affected by the Crank-Nickelson time stepping. The RHS reads: |
964 |
|
$\epsilon_{fw} ( \gamma (P-E)^{n+1/2} + (1-\gamma) (P-E)^{n-1/2} )$ |
965 |
\item The non-hydrostatic part of the code has not yet been |
\item The non-hydrostatic part of the code has not yet been |
966 |
updated, so that this option cannot be used with $(\beta,\gamma) \neq (1,1)$. |
updated, and therefore cannot be used with $(\beta,\gamma) \neq (1,1)$. |
967 |
\item The stability criteria with Crank-Nickelson time stepping |
\item The stability criteria with Crank-Nickelson time stepping |
968 |
for the pure linear gravity wave problem in cartesian coordinates is: |
for the pure linear gravity wave problem in cartesian coordinates is: |
969 |
\begin{itemize} |
\begin{itemize} |