609 |
(\theta^*,S^*) & = & (\theta^{n},S^{n}) + \Delta t G_{\theta,S}^{(n+1/2)} |
(\theta^*,S^*) & = & (\theta^{n},S^{n}) + \Delta t G_{\theta,S}^{(n+1/2)} |
610 |
\label{eq:tstar-staggered} \\ |
\label{eq:tstar-staggered} \\ |
611 |
(\theta^{n+1},S^{n+1}) & = & {\cal L}^{-1}_{\theta,S} (\theta^*,S^*) |
(\theta^{n+1},S^{n+1}) & = & {\cal L}^{-1}_{\theta,S} (\theta^*,S^*) |
612 |
\label{eq:t-n+1-staggered} \\ |
\label{eq:t-n+1-staggered} |
613 |
\end{eqnarray} |
\end{eqnarray} |
614 |
The corresponding calling tree is given in |
The corresponding calling tree is given in |
615 |
\ref{fig:call-tree-adams-bashforth-staggered}. |
\ref{fig:call-tree-adams-bashforth-staggered}. |