10 |
terms are described first, afterwards the schemes that apply to |
terms are described first, afterwards the schemes that apply to |
11 |
passive and dynamically active tracers are described. |
passive and dynamically active tracers are described. |
12 |
|
|
13 |
|
\input{part2/notation} |
14 |
|
|
15 |
\section{Time-stepping} |
\section{Time-stepping} |
16 |
\begin{rawhtml} |
\begin{rawhtml} |
609 |
(\theta^*,S^*) & = & (\theta^{n},S^{n}) + \Delta t G_{\theta,S}^{(n+1/2)} |
(\theta^*,S^*) & = & (\theta^{n},S^{n}) + \Delta t G_{\theta,S}^{(n+1/2)} |
610 |
\label{eq:tstar-staggered} \\ |
\label{eq:tstar-staggered} \\ |
611 |
(\theta^{n+1},S^{n+1}) & = & {\cal L}^{-1}_{\theta,S} (\theta^*,S^*) |
(\theta^{n+1},S^{n+1}) & = & {\cal L}^{-1}_{\theta,S} (\theta^*,S^*) |
612 |
\label{eq:t-n+1-staggered} \\ |
\label{eq:t-n+1-staggered} |
613 |
\end{eqnarray} |
\end{eqnarray} |
614 |
The corresponding calling tree is given in |
The corresponding calling tree is given in |
615 |
\ref{fig:call-tree-adams-bashforth-staggered}. |
\ref{fig:call-tree-adams-bashforth-staggered}. |
815 |
|
|
816 |
|
|
817 |
Once ${\eta}^{n+1}$ has been found, substituting into |
Once ${\eta}^{n+1}$ has been found, substituting into |
818 |
\ref{eq:discrete-time-u,eq:discrete-time-v} yields $\vec{\bf v}^{n+1}$ if the model is |
\ref{eq:discrete-time-u}, \ref{eq:discrete-time-v} yields $\vec{\bf v}^{n+1}$ |
819 |
hydrostatic ($\epsilon_{nh}=0$): |
if the model is hydrostatic ($\epsilon_{nh}=0$): |
820 |
$$ |
$$ |
821 |
\vec{\bf v}^{n+1} = \vec{\bf v}^{*} |
\vec{\bf v}^{n+1} = \vec{\bf v}^{*} |
822 |
- \Delta t {\bf \nabla}_h b_s {\eta}^{n+1} |
- \Delta t {\bf \nabla}_h b_s {\eta}^{n+1} |