/[MITgcm]/manual/s_algorithm/text/time_stepping.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/time_stepping.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.21 by jmc, Tue Apr 4 20:16:39 2006 UTC revision 1.23 by edhill, Tue Jun 27 22:29:56 2006 UTC
# Line 10  describe the spatial discretization. The Line 10  describe the spatial discretization. The
10  terms are described first, afterwards the schemes that apply to  terms are described first, afterwards the schemes that apply to
11  passive and dynamically active tracers are described.  passive and dynamically active tracers are described.
12    
13    \input{part2/notation}
14    
15  \section{Time-stepping}  \section{Time-stepping}
16  \begin{rawhtml}  \begin{rawhtml}
# Line 608  G_{\theta,S}^{(n+1/2)} & = & (3/2+\epsil Line 609  G_{\theta,S}^{(n+1/2)} & = & (3/2+\epsil
609  (\theta^*,S^*) & = & (\theta^{n},S^{n}) + \Delta t G_{\theta,S}^{(n+1/2)}  (\theta^*,S^*) & = & (\theta^{n},S^{n}) + \Delta t G_{\theta,S}^{(n+1/2)}
610  \label{eq:tstar-staggered} \\  \label{eq:tstar-staggered} \\
611  (\theta^{n+1},S^{n+1}) & = & {\cal L}^{-1}_{\theta,S} (\theta^*,S^*)  (\theta^{n+1},S^{n+1}) & = & {\cal L}^{-1}_{\theta,S} (\theta^*,S^*)
612  \label{eq:t-n+1-staggered} \\  \label{eq:t-n+1-staggered}
613  \end{eqnarray}  \end{eqnarray}
614  The corresponding calling tree is given in  The corresponding calling tree is given in
615  \ref{fig:call-tree-adams-bashforth-staggered}.  \ref{fig:call-tree-adams-bashforth-staggered}.

Legend:
Removed from v.1.21  
changed lines
  Added in v.1.23

  ViewVC Help
Powered by ViewVC 1.1.22