/[MITgcm]/manual/s_algorithm/text/time_stepping.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/time_stepping.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.5 by jmc, Mon Sep 24 19:30:40 2001 UTC revision 1.19 by edhill, Sat Oct 16 03:40:12 2004 UTC
# Line 1  Line 1 
1  % $Header$  % $Header$
2  % $Name$  % $Name$
3    
4  The convention used in this section is as follows:  This chapter lays out the numerical schemes that are
5  Time is "discretize" using a time step $\Delta t$    employed in the core MITgcm algorithm. Whenever possible
6  and $\Phi^n$ refers to the variable $\Phi$  links are made to actual program code in the MITgcm implementation.
7  at time $t = n \Delta t$ . We used the notation $\Phi^{(n)}$  The chapter begins with a discussion of the temporal discretization
8  when time interpolation is required to estimate the value of $\phi$  used in MITgcm. This discussion is followed by sections that
9  at the time $n \Delta t$.  describe the spatial discretization. The schemes employed for momentum
10    terms are described first, afterwards the schemes that apply to
11  \section{Time integration}  passive and dynamically active tracers are described.
12    
13  The discretization in time of the model equations (cf section I )  
14  does not depend of the discretization in space of each  \section{Time-stepping}
15  term, so that this section can be read independently.  \begin{rawhtml}
16  Also for this purpose, we will refers to the continuous  <!-- CMIREDIR:time-stepping: -->
17  space-derivative form of model equations, and focus on  \end{rawhtml}
18  the time discretization.  
19    The equations of motion integrated by the model involve four
20  The continuous form of the model equations is:  prognostic equations for flow, $u$ and $v$, temperature, $\theta$, and
21    salt/moisture, $S$, and three diagnostic equations for vertical flow,
22  \begin{eqnarray}  $w$, density/buoyancy, $\rho$/$b$, and pressure/geo-potential,
23  \partial_t \theta & = & G_\theta  $\phi_{hyd}$. In addition, the surface pressure or height may by
24  \label{eq-tCsC-theta}  described by either a prognostic or diagnostic equation and if
25  \\  non-hydrostatics terms are included then a diagnostic equation for
26  \partial_t S & = & G_s  non-hydrostatic pressure is also solved. The combination of prognostic
27  \label{eq-tCsC-salt}  and diagnostic equations requires a model algorithm that can march
28  \\  forward prognostic variables while satisfying constraints imposed by
29  b' & = & b'(\theta,S,r)  diagnostic equations.
30  \\  
31  \partial_r \phi'_{hyd} & = & -b'  Since the model comes in several flavors and formulation, it would be
32  \label{eq-tCsC-hyd}  confusing to present the model algorithm exactly as written into code
33  \\  along with all the switches and optional terms. Instead, we present
34  \partial_t \vec{\bf v}  the algorithm for each of the basic formulations which are:
35  + {\bf \nabla}_h b_s \eta  \begin{enumerate}
36  + \epsilon_{nh} {\bf \nabla}_h \phi'_{nh}  \item the semi-implicit pressure method for hydrostatic equations
37  & = & \vec{\bf G}_{\vec{\bf v}}  with a rigid-lid, variables co-located in time and with
38  - {\bf \nabla}_h \phi'_{hyd}  Adams-Bashforth time-stepping, \label{it:a}
39  \label{eq-tCsC-Hmom}  \item as \ref{it:a}. but with an implicit linear free-surface, \label{it:b}
40  \\  \item as \ref{it:a}. or \ref{it:b}. but with variables staggered in time,
41  \epsilon_{nh} \frac {\partial{\dot{r}}}{\partial{t}}  \label{it:c}
42  + \epsilon_{nh} \partial_r \phi'_{nh}  \item as \ref{it:a}. or \ref{it:b}. but with non-hydrostatic terms included,
43  & = & \epsilon_{nh} G_{\dot{r}}  \item as \ref{it:b}. or \ref{it:c}. but with non-linear free-surface.
44  \label{eq-tCsC-Vmom}  \end{enumerate}
45  \\  
46  {\bf \nabla}_h \cdot \vec{\bf v} + \partial_r \dot{r}  In all the above configurations it is also possible to substitute the
47  & = & 0  Adams-Bashforth with an alternative time-stepping scheme for terms
48  \label{eq-tCsC-cont}  evaluated explicitly in time. Since the over-arching algorithm is
49    independent of the particular time-stepping scheme chosen we will
50    describe first the over-arching algorithm, known as the pressure
51    method, with a rigid-lid model in section
52    \ref{sect:pressure-method-rigid-lid}. This algorithm is essentially
53    unchanged, apart for some coefficients, when the rigid lid assumption
54    is replaced with a linearized implicit free-surface, described in
55    section \ref{sect:pressure-method-linear-backward}. These two flavors
56    of the pressure-method encompass all formulations of the model as it
57    exists today. The integration of explicit in time terms is out-lined
58    in section \ref{sect:adams-bashforth} and put into the context of the
59    overall algorithm in sections \ref{sect:adams-bashforth-sync} and
60    \ref{sect:adams-bashforth-staggered}. Inclusion of non-hydrostatic
61    terms requires applying the pressure method in three dimensions
62    instead of two and this algorithm modification is described in section
63    \ref{sect:non-hydrostatic}. Finally, the free-surface equation may be
64    treated more exactly, including non-linear terms, and this is
65    described in section \ref{sect:nonlinear-freesurface}.
66    
67    
68    \section{Pressure method with rigid-lid}
69    \label{sect:pressure-method-rigid-lid}
70    \begin{rawhtml}
71    <!-- CMIREDIR:pressure_method_rigid_lid: -->
72    \end{rawhtml}
73    
74    \begin{figure}
75    \begin{center}
76    \resizebox{4.0in}{!}{\includegraphics{part2/pressure-method-rigid-lid.eps}}
77    \end{center}
78    \caption{
79    A schematic of the evolution in time of the pressure method
80    algorithm. A prediction for the flow variables at time level $n+1$ is
81    made based only on the explicit terms, $G^{(n+^1/_2)}$, and denoted
82    $u^*$, $v^*$. Next, a pressure field is found such that $u^{n+1}$,
83    $v^{n+1}$ will be non-divergent. Conceptually, the $*$ quantities
84    exist at time level $n+1$ but they are intermediate and only
85    temporary.}
86    \label{fig:pressure-method-rigid-lid}
87    \end{figure}
88    
89    \begin{figure}
90    \begin{center} \fbox{ \begin{minipage}{4.5in} \begin{tabbing}
91    aaa \= aaa \= aaa \= aaa \= aaa \= aaa \kill
92    \filelink{FORWARD\_STEP}{model-src-forward_step.F} \\
93    \> DYNAMICS \\
94    \>\> TIMESTEP \` $u^*$,$v^*$ (\ref{eq:ustar-rigid-lid},\ref{eq:vstar-rigid-lid}) \\
95    \> SOLVE\_FOR\_PRESSURE \\
96    \>\> CALC\_DIV\_GHAT \` $H\widehat{u^*}$,$H\widehat{v^*}$ (\ref{eq:elliptic}) \\
97    \>\> CG2D \` $\eta^{n+1}$ (\ref{eq:elliptic}) \\
98    \> MOMENTUM\_CORRECTION\_STEP  \\
99    \>\> CALC\_GRAD\_PHI\_SURF \` $\nabla \eta^{n+1}$ \\
100    \>\> CORRECTION\_STEP \` $u^{n+1}$,$v^{n+1}$ (\ref{eq:un+1-rigid-lid},\ref{eq:vn+1-rigid-lid})
101    \end{tabbing} \end{minipage} } \end{center}
102    \caption{Calling tree for the pressure method algorithm
103      (\filelink{FORWARD\_STEP}{model-src-forward_step.F})}
104    \label{fig:call-tree-pressure-method}
105    \end{figure}
106    
107    The horizontal momentum and continuity equations for the ocean
108    (\ref{eq:ocean-mom} and \ref{eq:ocean-cont}), or for the atmosphere
109    (\ref{eq:atmos-mom} and \ref{eq:atmos-cont}), can be summarized by:
110    \begin{eqnarray}
111    \partial_t u + g \partial_x \eta & = & G_u \\
112    \partial_t v + g \partial_y \eta & = & G_v \\
113    \partial_x u + \partial_y v + \partial_z w & = & 0
114  \end{eqnarray}  \end{eqnarray}
115  where  where we are adopting the oceanic notation for brevity. All terms in
116  \begin{eqnarray*}  the momentum equations, except for surface pressure gradient, are
117  G_\theta & = &  encapsulated in the $G$ vector. The continuity equation, when
118  - \vec{\bf v} \cdot {\bf \nabla} \theta + {\cal Q}_\theta  integrated over the fluid depth, $H$, and with the rigid-lid/no normal
119  \\  flow boundary conditions applied, becomes:
120  G_S & = &  \begin{equation}
121  - \vec{\bf v} \cdot {\bf \nabla} S + {\cal Q}_S  \partial_x H \widehat{u} + \partial_y H \widehat{v} = 0
122  \\  \label{eq:rigid-lid-continuity}
123  \vec{\bf G}_{\vec{\bf v}}  \end{equation}
124  & = &  Here, $H\widehat{u} = \int_H u dz$ is the depth integral of $u$,
125  - \vec{\bf v} \cdot {\bf \nabla} \vec{\bf v}  similarly for $H\widehat{v}$. The rigid-lid approximation sets $w=0$
126  - f \hat{\bf k} \wedge \vec{\bf v}  at the lid so that it does not move but allows a pressure to be
127  + \vec{\cal F}_{\vec{\bf v}}  exerted on the fluid by the lid. The horizontal momentum equations and
128  \\  vertically integrated continuity equation are be discretized in time
129  G_{\dot{r}}  and space as follows:
130  & = &  \begin{eqnarray}
131  - \vec{\bf v} \cdot {\bf \nabla} \dot{r}  u^{n+1} + \Delta t g \partial_x \eta^{n+1}
132  + {\cal F}_{\dot{r}}  & = & u^{n} + \Delta t G_u^{(n+1/2)}
133  \end{eqnarray*}  \label{eq:discrete-time-u}
134  The exact form of all the "{\it G}"s terms is described in the next  \\
135  section (). Here its sufficient to mention that they contains  v^{n+1} + \Delta t g \partial_y \eta^{n+1}
136  all the RHS terms except the pressure / geo- potential terms.  & = & v^{n} + \Delta t G_v^{(n+1/2)}
137    \label{eq:discrete-time-v}
138  The switch $\epsilon_{nh}$ allows to activate the non hydrostatic  \\
139  mode ($\epsilon_{nh}=1$) for the ocean model. Otherwise,    \partial_x H \widehat{u^{n+1}}
140  in the hydrostatic limit $\epsilon_{nh} = 0$  + \partial_y H \widehat{v^{n+1}} & = & 0
141  and equation \ref{eq-tCsC-Vmom} vanishes.  \label{eq:discrete-time-cont-rigid-lid}
142    \end{eqnarray}
143  The equation for $\eta$ is obtained by integrating the  As written here, terms on the LHS all involve time level $n+1$ and are
144  continuity equation over the entire depth of the fluid,  referred to as implicit; the implicit backward time stepping scheme is
145  from $R_{fixed}(x,y)$ up to $R_o(x,y)$  being used. All other terms in the RHS are explicit in time. The
146  (Linear free surface):  thermodynamic quantities are integrated forward in time in parallel
147  \begin{eqnarray}  with the flow and will be discussed later. For the purposes of
148  \epsilon_{fs} \partial_t \eta =  describing the pressure method it suffices to say that the hydrostatic
149  \left. \dot{r} \right|_{r=r_{surf}} + \epsilon_{fw} (P-E) =  pressure gradient is explicit and so can be included in the vector
150  - {\bf \nabla} \cdot \int_{R_{fixed}}^{R_o} \vec{\bf v} dr  $G$.
151  + \epsilon_{fw} (P-E)  
152  \label{eq-tCsC-eta}  Substituting the two momentum equations into the depth integrated
153  \end{eqnarray}  continuity equation eliminates $u^{n+1}$ and $v^{n+1}$ yielding an
154    elliptic equation for $\eta^{n+1}$. Equations
155  Where $\epsilon_{fs}$,$\epsilon_{fw}$ are two flags to  \ref{eq:discrete-time-u}, \ref{eq:discrete-time-v} and
156  distinguish between a free-surface equation ($\epsilon_{fs}=1$)  \ref{eq:discrete-time-cont-rigid-lid} can then be re-arranged as follows:
157  or the rigid-lid approximation ($\epsilon_{fs}=0$);    \begin{eqnarray}
158  and to distinguish when exchange of Fresh-Water is included  u^{*} & = & u^{n} + \Delta t G_u^{(n+1/2)} \label{eq:ustar-rigid-lid} \\
159  at the ocean surface (natural BC) ($\epsilon_{fw} = 1$)  v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-rigid-lid} \\
160  or not ($\epsilon_{fw} = 0$).    \partial_x \Delta t g H \partial_x \eta^{n+1}
161    + \partial_y \Delta t g H \partial_y \eta^{n+1}
 The hydrostatic potential is found by  
 integrating \ref{eq-tCsC-hyd} with the boundary condition that  
 $\phi'_{hyd}(r=R_o) = 0$:  
 \begin{eqnarray*}  
 & &  
 \int_{r'}^{R_o} \partial_r \phi'_{hyd} dr =  
 \left[ \phi'_{hyd} \right]_{r'}^{R_o} =  
 \int_{r'}^{R_o} - b' dr  
 \\  
 \Rightarrow & &  
 \phi'_{hyd}(x,y,r') = \int_{r'}^{R_o} b' dr  
 \end{eqnarray*}  
   
 \subsection{General method}  
   
 An overview of the general method is presented hereafter,  
 with explicit references to the Fortran code. This part  
 often refers to the discretized equations of the model  
 that are detailed in the following sections.  
   
 The general algorithm consist in  a "predictor step" that computes  
 the forward tendencies ("G" terms") and all  
 the "first guess" values (star notation):  
 $\theta^*, S^*, \vec{\bf v}^*$ (and $\dot{r}^*$  
 in non-hydrostatic mode). This is done in the two routines  
 {\it THERMODYNAMICS} and {\it DYNAMICS}.  
   
 Then the implicit terms that appear on the left hand side (LHS)  
 of equations \ref{eq-tDsC-theta} - \ref{eq-tDsC-cont},  
 are solved as follows:  
 Since implicit vertical diffusion and viscosity terms  
 are independent from the barotropic flow adjustment,  
 they are computed first, solving a 3 diagonal Nr x Nr linear system,  
 and incorporated at the end of the {\it THERMODYNAMICS} and  
 {\it DYNAMICS} routines.  
 Then the surface pressure and non hydrostatic pressure  
 are evaluated ({\it SOLVE\_FOR\_PRESSURE});  
   
 Finally, within a "corrector step',  
 (routine {\it THE\_CORRECTION\_STEP})  
 the new values of $u,v,w,\theta,S$  
 are derived according to the above equations  
 (see details in II.1.3).  
   
 At this point, the regular time step is over, but    
 the correction step contains also other optional  
 adjustments such as convective adjustment algorithm, or filters  
 (zonal FFT filter, shapiro filter)  
 that applied on both momentum and tracer fields.  
 just before setting the $n+1$ new time step value.  
   
 Since the pressure solver precision is of the order of  
 the "target residual" that could be lower than the  
 the computer truncation error, and also because some filters  
 might alter the divergence part of the flow field,  
 a final evaluation of the surface r anomaly $\eta^{n+1}$  
 is performed, according to \ref{eq-tDsC-eta} ({\it CALC\_EXACT\_ETA}).  
 This ensures a perfect volume conservation.  
 Note that there is no need for an equivalent Non-hydrostatic  
 "exact conservation" step, since W is already computed after  
 the filters applied.  
   
 Regarding optional forcing terms (usually part of a "package"),  
 that account for a specific source or sink term (e.g.: condensation  
 as a sink of water vapor Q), they are generally incorporated  
 in the main algorithm as follows;  
 At the the beginning of the time step,  
 the additional tendencies are computed  
 as function of the present state (time step $n$) and external forcing ;  
 Then within the main part of model,  
 only those new tendencies are added to the model variables.  
   
 [more details needed]\\  
   
 The atmospheric physics follows this general scheme.  
   
 [more about C\_grid, A\_grid conversion \& drag term]\\  
   
 \subsection{Standard synchronous time stepping}  
   
 In the standard formulation, the surface pressure is  
 evaluated at time step n+1 (implicit method).  
 The above set of equations is then discretized in time  
 as follows:  
 \begin{eqnarray}  
 \left[ 1 - \partial_r \kappa_v^\theta \partial_r \right]  
 \theta^{n+1} & = & \theta^*  
 \label{eq-tDsC-theta}  
 \\  
 \left[ 1 - \partial_r \kappa_v^S \partial_r \right]  
 S^{n+1} & = & S^*  
 \label{eq-tDsC-salt}  
 \\  
 %{b'}^{n} & = & b'(\theta^{n},S^{n},r)  
 %\partial_r {\phi'_{hyd}}^{n} & = & {-b'}^{n}  
 %\\  
 {\phi'_{hyd}}^{n} & = & \int_{r'}^{R_o} b'(\theta^{n},S^{n},r) dr  
 \label{eq-tDsC-hyd}  
 \\  
 \vec{\bf v} ^{n+1}  
 + \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}  
 + \epsilon_{nh} \Delta t {\bf \nabla} {\phi'_{nh}}^{n+1}  
 - \partial_r A_v \partial_r \vec{\bf v}^{n+1}  
162  & = &  & = &
163  \vec{\bf v}^*    \partial_x H \widehat{u^{*}}
164  \label{eq-tDsC-Hmom}  + \partial_y H \widehat{v^{*}} \label{eq:elliptic}
165  \\  \\
166  \epsilon_{fs} {\eta}^{n+1} + \Delta t  u^{n+1} & = & u^{*} - \Delta t g \partial_x \eta^{n+1} \label{eq:un+1-rigid-lid}\\
167  {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o} \vec{\bf v}^{n+1} dr  v^{n+1} & = & v^{*} - \Delta t g \partial_y \eta^{n+1} \label{eq:vn+1-rigid-lid}
 & = &  
     \epsilon_{fs} {\eta}^{n} + \epsilon_{fw} \Delta_t (P-E)^{n}  
 \nonumber  
 \\  
 % = \epsilon_{fs} {\eta}^{n} & + & \epsilon_{fw} \Delta_t (P-E)^{n}  
 \label{eq-tDsC-eta}  
 \\  
 \epsilon_{nh} \left( \dot{r} ^{n+1}  
 + \Delta t \partial_r {\phi'_{nh}} ^{n+1}  
 \right)  
 & = & \epsilon_{nh} \dot{r}^*  
 \label{eq-tDsC-Vmom}  
 \\  
 {\bf \nabla}_h \cdot \vec{\bf v}^{n+1} + \partial_r \dot{r}^{n+1}  
 & = & 0  
 \label{eq-tDsC-cont}  
168  \end{eqnarray}  \end{eqnarray}
169  where  Equations \ref{eq:ustar-rigid-lid} to \ref{eq:vn+1-rigid-lid}, solved
170    sequentially, represent the pressure method algorithm used in the
171    model. The essence of the pressure method lies in the fact that any
172    explicit prediction for the flow would lead to a divergence flow field
173    so a pressure field must be found that keeps the flow non-divergent
174    over each step of the integration. The particular location in time of
175    the pressure field is somewhat ambiguous; in
176    Fig.~\ref{fig:pressure-method-rigid-lid} we depicted as co-located
177    with the future flow field (time level $n+1$) but it could equally
178    have been drawn as staggered in time with the flow.
179    
180    The correspondence to the code is as follows:
181    \begin{itemize}
182    \item
183    the prognostic phase, equations \ref{eq:ustar-rigid-lid} and \ref{eq:vstar-rigid-lid},
184    stepping forward $u^n$ and $v^n$ to $u^{*}$ and $v^{*}$ is coded in
185    \filelink{TIMESTEP()}{model-src-timestep.F}
186    \item
187    the vertical integration, $H \widehat{u^*}$ and $H
188    \widehat{v^*}$, divergence and inversion of the elliptic operator in
189    equation \ref{eq:elliptic} is coded in
190    \filelink{SOLVE\_FOR\_PRESSURE()}{model-src-solve_for_pressure.F}
191    \item
192    finally, the new flow field at time level $n+1$ given by equations
193    \ref{eq:un+1-rigid-lid} and \ref{eq:vn+1-rigid-lid} is calculated in
194    \filelink{CORRECTION\_STEP()}{model-src-correction_step.F}.
195    \end{itemize}
196    The calling tree for these routines is given in
197    Fig.~\ref{fig:call-tree-pressure-method}.
198    
199    
200    
201    \paragraph{Need to discuss implicit viscosity somewhere:}
202  \begin{eqnarray}  \begin{eqnarray}
203  \theta^* & = &  \frac{1}{\Delta t} u^{n+1} - \partial_z A_v \partial_z u^{n+1}
204  \theta ^{n} + \Delta t G_{\theta} ^{(n+1/2)}  + g \partial_x \eta^{n+1} & = & \frac{1}{\Delta t} u^{n} +
205  \\  G_u^{(n+1/2)}
 S^* & = &  
 S ^{n} + \Delta t G_{S} ^{(n+1/2)}  
 \\  
 \vec{\bf v}^* & = &  
 \vec{\bf v}^{n} + \Delta t \vec{\bf G}_{\vec{\bf v}} ^{(n+1/2)}  
 + \Delta t  {\bf \nabla}_h {\phi'_{hyd}}^{(n+1/2)}  
206  \\  \\
207  \dot{r}^* & = &  \frac{1}{\Delta t} v^{n+1} - \partial_z A_v \partial_z v^{n+1}
208  \dot{r} ^{n} + \Delta t G_{\dot{r}} ^{(n+1/2)}  + g \partial_y \eta^{n+1} & = & \frac{1}{\Delta t} v^{n} + G_v^{(n+1/2)}
209  \end{eqnarray}  \end{eqnarray}
210    
 Note that implicit vertical terms (viscosity and diffusivity) are  
 not considered as part of the "{\it G}" terms, but are  
 written separately here.  
   
 To ensure a second order time discretization for both  
 momentum and tracer,  
 The "{\it G}" terms are "extrapolated" forward in time  
 (Adams Bashforth time stepping)  
 from the values computed at time step $n$ and $n-1$  
 to the time $n+1/2$:  
 $$G^{(n+1/2)} = G^n + (1/2+\epsilon_{AB}) (G^n - G^{n-1})$$  
 A small number for the parameter $\epsilon_{AB}$ is generally used  
 to stabilize this time stepping.  
   
 In the standard non-stagger formulation,  
 the Adams-Bashforth time stepping is also applied to the  
 hydrostatic (pressure / geo-) potential term $\nabla_h \Phi'_{hyd}$.  
 Note that presently, this term is in fact incorporated to the  
 $\vec{\bf G}_{\vec{\bf v}}$ arrays ({\bf gU,gV}).  
   
 \subsection{Stagger baroclinic time stepping}  
   
 An alternative is to evaluate $\phi'_{hyd}$ with the  
 new tracer fields, and step forward the momentum after.  
 This option is known as stagger baroclinic time stepping,  
 since tracer and momentum are step forward in time one after the other.  
 It can be activated turning on a running flag parameter  
 {\bf staggerTimeStep} in file "{\it data}").  
   
 The main advantage of this time stepping compared to a synchronous one,  
 is a better stability, specially regarding internal gravity waves,  
 and a very natural implementation of a 2nd order in time  
 hydrostatic pressure / geo- potential term.  
 In the other hand, a synchronous time step might be  better  
 for convection problems; Its also make simpler time dependent forcing  
 and diagnostic implementation ; and allows a more efficient threading.  
   
 Although the stagger time step does not affect deeply the  
 structure of the code --- a switch allows to evaluate the  
 hydrostatic pressure / geo- potential from new $\theta,S$  
 instead of the Adams-Bashforth estimation ---  
 this affect the way the time discretization is presented :  
211    
212  \begin{eqnarray*}  \section{Pressure method with implicit linear free-surface}
213  \left[ 1 - \partial_r \kappa_v^\theta \partial_r \right]  \label{sect:pressure-method-linear-backward}
214  \theta^{n+1/2} & = & \theta^*  \begin{rawhtml}
215  \\  <!-- CMIREDIR:pressure_method_linear_backward: -->
216  \left[ 1 - \partial_r \kappa_v^S \partial_r \right]  \end{rawhtml}
217  S^{n+1/2} & = & S^*  
218  \end{eqnarray*}  The rigid-lid approximation filters out external gravity waves
219  with  subsequently modifying the dispersion relation of barotropic Rossby
220  \begin{eqnarray*}  waves. The discrete form of the elliptic equation has some zero
221  \theta^* & = &  eigen-values which makes it a potentially tricky or inefficient
222  \theta ^{(n-1/2)} + \Delta t G_{\theta} ^{(n)}  problem to solve.
223  \\  
224  S^* & = &  The rigid-lid approximation can be easily replaced by a linearization
225  S ^{(n-1/2)} + \Delta t G_{S} ^{(n)}  of the free-surface equation which can be written:
226  \end{eqnarray*}  \begin{equation}
227  And  \partial_t \eta + \partial_x H \widehat{u} + \partial_y H \widehat{v} = P-E+R
228  \begin{eqnarray*}  \label{eq:linear-free-surface=P-E+R}
229  %{b'}^{n+1/2} & = & b'(\theta^{n+1/2},S^{n+1/2},r)  \end{equation}
230  %\\  which differs from the depth integrated continuity equation with
231  %\partial_r {\phi'_{hyd}}^{n+1/2} & = & {-b'}^{n+1/2}  rigid-lid (\ref{eq:rigid-lid-continuity}) by the time-dependent term
232  {\phi'_{hyd}}^{n+1/2} & = & \int_{r'}^{R_o} b'(\theta^{n+1/2},S^{n+1/2},r) dr  and fresh-water source term.
233  %\label{eq-tDsC-hyd}  
234  \\  Equation \ref{eq:discrete-time-cont-rigid-lid} in the rigid-lid
235  \vec{\bf v} ^{n+1}  pressure method is then replaced by the time discretization of
236  + \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}  \ref{eq:linear-free-surface=P-E+R} which is:
237  + \epsilon_{nh} \Delta t {\bf \nabla}_h {\phi'_{nh}}^{n+1}  \begin{equation}
238  - \partial_r A_v \partial_r \vec{\bf v}^{n+1}  \eta^{n+1}
239    + \Delta t \partial_x H \widehat{u^{n+1}}
240    + \Delta t \partial_y H \widehat{v^{n+1}}
241    =
242    \eta^{n}
243    + \Delta t ( P - E + R )
244    \label{eq:discrete-time-backward-free-surface}
245    \end{equation}
246    where the use of flow at time level $n+1$ makes the method implicit
247    and backward in time. The is the preferred scheme since it still
248    filters the fast unresolved wave motions by damping them. A centered
249    scheme, such as Crank-Nicholson, would alias the energy of the fast
250    modes onto slower modes of motion.
251    
252    As for the rigid-lid pressure method, equations
253    \ref{eq:discrete-time-u}, \ref{eq:discrete-time-v} and
254    \ref{eq:discrete-time-backward-free-surface} can be re-arranged as follows:
255    \begin{eqnarray}
256    u^{*} & = & u^{n} + \Delta t G_u^{(n+1/2)} \label{eq:ustar-backward-free-surface} \\
257    v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-backward-free-surface} \\
258    \eta^* & = & \epsilon_{fs} \left( \eta^{n} +P-E+R \right)- \Delta t
259      \partial_x H \widehat{u^{*}}
260    + \partial_y H \widehat{v^{*}}
261    \\
262      \partial_x g H \partial_x \eta^{n+1}
263    + \partial_y g H \partial_y \eta^{n+1}
264    - \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2}
265  & = &  & = &
266  \vec{\bf v}^*  - \frac{\eta^*}{\Delta t^2}
267  %\label{eq-tDsC-Hmom}  \label{eq:elliptic-backward-free-surface}
268  \\  \\
269  \epsilon_{fs} {\eta}^{n+1} + \Delta t  u^{n+1} & = & u^{*} - \Delta t g \partial_x \eta^{n+1} \label{eq:un+1-backward-free-surface}\\
270  {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o} \vec{\bf v}^{n+1} dr  v^{n+1} & = & v^{*} - \Delta t g \partial_y \eta^{n+1} \label{eq:vn+1-backward-free-surface}
271  & = &  \end{eqnarray}
272  \epsilon_{fs} {\eta}^{n} + \epsilon_{fw} \Delta_t (P-E)^{n}  Equations~\ref{eq:ustar-backward-free-surface}
273  \\  to~\ref{eq:vn+1-backward-free-surface}, solved sequentially, represent
274  \epsilon_{nh} \left( \dot{r} ^{n+1}  the pressure method algorithm with a backward implicit, linearized
275  + \Delta t \partial_r {\phi'_{nh}} ^{n+1}  free surface. The method is still formerly a pressure method because
276  \right)  in the limit of large $\Delta t$ the rigid-lid method is
277  & = & \epsilon_{nh} \dot{r}^*  recovered. However, the implicit treatment of the free-surface allows
278  %\label{eq-tDsC-Vmom}  the flow to be divergent and for the surface pressure/elevation to
279  \\  respond on a finite time-scale (as opposed to instantly). To recover
280  {\bf \nabla}_h \cdot \vec{\bf v}^{n+1} + \partial_r \dot{r}^{n+1}  the rigid-lid formulation, we introduced a switch-like parameter,
281  & = & 0  $\epsilon_{fs}$, which selects between the free-surface and rigid-lid;
282  %\label{eq-tDsC-cont}  $\epsilon_{fs}=1$ allows the free-surface to evolve; $\epsilon_{fs}=0$
283  \end{eqnarray*}  imposes the rigid-lid. The evolution in time and location of variables
284  with  is exactly as it was for the rigid-lid model so that
285    Fig.~\ref{fig:pressure-method-rigid-lid} is still
286    applicable. Similarly, the calling sequence, given in
287    Fig.~\ref{fig:call-tree-pressure-method}, is as for the
288    pressure-method.
289    
290    
291    \section{Explicit time-stepping: Adams-Bashforth}
292    \label{sect:adams-bashforth}
293    \begin{rawhtml}
294    <!-- CMIREDIR:adams_bashforth: -->
295    \end{rawhtml}
296    
297    In describing the the pressure method above we deferred describing the
298    time discretization of the explicit terms. We have historically used
299    the quasi-second order Adams-Bashforth method for all explicit terms
300    in both the momentum and tracer equations. This is still the default
301    mode of operation but it is now possible to use alternate schemes for
302    tracers (see section \ref{sect:tracer-advection}).
303    
304    \begin{figure}
305    \begin{center} \fbox{ \begin{minipage}{4.5in} \begin{tabbing}
306    aaa \= aaa \= aaa \= aaa \= aaa \= aaa \kill
307    FORWARD\_STEP \\
308    \> THERMODYNAMICS \\
309    \>\> CALC\_GT \\
310    \>\>\> GAD\_CALC\_RHS \` $G_\theta^n = G_\theta( u, \theta^n )$ \\
311    \>either\>\> EXTERNAL\_FORCING \` $G_\theta^n = G_\theta^n + {\cal Q}$ \\
312    \>\>\> ADAMS\_BASHFORTH2 \` $G_\theta^{(n+1/2)}$ (\ref{eq:adams-bashforth2}) \\
313    \>or\>\> EXTERNAL\_FORCING \` $G_\theta^{(n+1/2)} = G_\theta^{(n+1/2)} + {\cal Q}$ \\
314    \>\> TIMESTEP\_TRACER \` $\tau^*$ (\ref{eq:taustar}) \\
315    \>\> IMPLDIFF \` $\tau^{(n+1)}$ (\ref{eq:tau-n+1-implicit})
316    \end{tabbing} \end{minipage} } \end{center}
317    \caption{
318    Calling tree for the Adams-Bashforth time-stepping of temperature with
319    implicit diffusion.}
320    \label{fig:call-tree-adams-bashforth}
321    \end{figure}
322    
323    In the previous sections, we summarized an explicit scheme as:
324    \begin{equation}
325    \tau^{*} = \tau^{n} + \Delta t G_\tau^{(n+1/2)}
326    \label{eq:taustar}
327    \end{equation}
328    where $\tau$ could be any prognostic variable ($u$, $v$, $\theta$ or
329    $S$) and $\tau^*$ is an explicit estimate of $\tau^{n+1}$ and would be
330    exact if not for implicit-in-time terms. The parenthesis about $n+1/2$
331    indicates that the term is explicit and extrapolated forward in time
332    and for this we use the quasi-second order Adams-Bashforth method:
333    \begin{equation}
334    G_\tau^{(n+1/2)} = ( 3/2 + \epsilon_{AB}) G_\tau^n
335    - ( 1/2 + \epsilon_{AB}) G_\tau^{n-1}
336    \label{eq:adams-bashforth2}
337    \end{equation}
338    This is a linear extrapolation, forward in time, to
339    $t=(n+1/2+{\epsilon_{AB}})\Delta t$. An extrapolation to the mid-point
340    in time, $t=(n+1/2)\Delta t$, corresponding to $\epsilon_{AB}=0$,
341    would be second order accurate but is weakly unstable for oscillatory
342    terms. A small but finite value for $\epsilon_{AB}$ stabilizes the
343    method. Strictly speaking, damping terms such as diffusion and
344    dissipation, and fixed terms (forcing), do not need to be inside the
345    Adams-Bashforth extrapolation. However, in the current code, it is
346    simpler to include these terms and this can be justified if the flow
347    and forcing evolves smoothly. Problems can, and do, arise when forcing
348    or motions are high frequency and this corresponds to a reduced
349    stability compared to a simple forward time-stepping of such terms.
350    The model offers the possibility to leave the forcing term outside the
351    Adams-Bashforth extrapolation, by turning off the logical flag
352    {\bf forcing\_In\_AB } (parameter file {\em data}, namelist {\em PARM01},
353    default value = True).
354    
355    A stability analysis for an oscillation equation should be given at this point.
356    \marginpar{AJA needs to find his notes on this...}
357    
358    A stability analysis for a relaxation equation should be given at this point.
359    \marginpar{...and for this too.}
360    
361    
362    \section{Implicit time-stepping: backward method}
363    \begin{rawhtml}
364    <!-- CMIREDIR:implicit_time-stepping_backward: -->
365    \end{rawhtml}
366    
367    Vertical diffusion and viscosity can be treated implicitly in time
368    using the backward method which is an intrinsic scheme.
369    Recently, the option to treat the vertical advection
370    implicitly has been added, but not yet tested; therefore,
371    the description hereafter is limited to diffusion and viscosity.
372    For tracers,
373    the time discretized equation is:
374    \begin{equation}
375    \tau^{n+1} - \Delta t \partial_r \kappa_v \partial_r \tau^{n+1} =
376    \tau^{n} + \Delta t G_\tau^{(n+1/2)}
377    \label{eq:implicit-diffusion}
378    \end{equation}
379    where $G_\tau^{(n+1/2)}$ is the remaining explicit terms extrapolated
380    using the Adams-Bashforth method as described above.  Equation
381    \ref{eq:implicit-diffusion} can be split split into:
382    \begin{eqnarray}
383    \tau^* & = & \tau^{n} + \Delta t G_\tau^{(n+1/2)}
384    \label{eq:taustar-implicit} \\
385    \tau^{n+1} & = & {\cal L}_\tau^{-1} ( \tau^* )
386    \label{eq:tau-n+1-implicit}
387    \end{eqnarray}
388    where ${\cal L}_\tau^{-1}$ is the inverse of the operator
389    \begin{equation}
390    {\cal L} = \left[ 1 + \Delta t \partial_r \kappa_v \partial_r \right]
391    \end{equation}
392    Equation \ref{eq:taustar-implicit} looks exactly as \ref{eq:taustar}
393    while \ref{eq:tau-n+1-implicit} involves an operator or matrix
394    inversion. By re-arranging \ref{eq:implicit-diffusion} in this way we
395    have cast the method as an explicit prediction step and an implicit
396    step allowing the latter to be inserted into the over all algorithm
397    with minimal interference.
398    
399    Fig.~\ref{fig:call-tree-adams-bashforth} shows the calling sequence for
400    stepping forward a tracer variable such as temperature.
401    
402    In order to fit within the pressure method, the implicit viscosity
403    must not alter the barotropic flow. In other words, it can only
404    redistribute momentum in the vertical. The upshot of this is that
405    although vertical viscosity may be backward implicit and
406    unconditionally stable, no-slip boundary conditions may not be made
407    implicit and are thus cast as a an explicit drag term.
408    
409    \section{Synchronous time-stepping: variables co-located in time}
410    \label{sect:adams-bashforth-sync}
411    \begin{rawhtml}
412    <!-- CMIREDIR:adams_bashforth_sync: -->
413    \end{rawhtml}
414    
415    \begin{figure}
416    \begin{center}
417    \resizebox{5.0in}{!}{\includegraphics{part2/adams-bashforth-sync.eps}}
418    \end{center}
419    \caption{
420    A schematic of the explicit Adams-Bashforth and implicit time-stepping
421    phases of the algorithm. All prognostic variables are co-located in
422    time. Explicit tendencies are evaluated at time level $n$ as a
423    function of the state at that time level (dotted arrow). The explicit
424    tendency from the previous time level, $n-1$, is used to extrapolate
425    tendencies to $n+1/2$ (dashed arrow). This extrapolated tendency
426    allows variables to be stably integrated forward-in-time to render an
427    estimate ($*$-variables) at the $n+1$ time level (solid
428    arc-arrow). The operator ${\cal L}$ formed from implicit-in-time terms
429    is solved to yield the state variables at time level $n+1$. }
430    \label{fig:adams-bashforth-sync}
431    \end{figure}
432    
433    \begin{figure}
434    \begin{center} \fbox{ \begin{minipage}{4.7in} \begin{tabbing}
435    aaa \= aaa \= aaa \= aaa \= aaa \= aaa \kill
436    FORWARD\_STEP \\
437    \>\> EXTERNAL\_FIELDS\_LOAD\\
438    \>\> DO\_ATMOSPHERIC\_PHYS \\
439    \>\> DO\_OCEANIC\_PHYS \\
440    \> THERMODYNAMICS \\
441    \>\> CALC\_GT \\
442    \>\>\> GAD\_CALC\_RHS \` $G_\theta^n = G_\theta( u, \theta^n )$ (\ref{eq:Gt-n-sync})\\
443    \>\>\> EXTERNAL\_FORCING \` $G_\theta^n = G_\theta^n + {\cal Q}$ \\
444    \>\>\> ADAMS\_BASHFORTH2 \` $G_\theta^{(n+1/2)}$ (\ref{eq:Gt-n+5-sync}) \\
445    \>\> TIMESTEP\_TRACER \` $\tau^*$ (\ref{eq:tstar-sync}) \\
446    \>\> IMPLDIFF \` $\tau^{(n+1)}$ (\ref{eq:t-n+1-sync}) \\
447    \> DYNAMICS \\
448    \>\> CALC\_PHI\_HYD \` $\phi_{hyd}^n$ (\ref{eq:phi-hyd-sync}) \\
449    \>\> MOM\_FLUXFORM or MOM\_VECINV \` $G_{\vec{\bf v}}^n$ (\ref{eq:Gv-n-sync})\\
450    \>\> TIMESTEP \` $\vec{\bf v}^*$ (\ref{eq:Gv-n+5-sync}, \ref{eq:vstar-sync}) \\
451    \>\> IMPLDIFF \` $\vec{\bf v}^{**}$ (\ref{eq:vstarstar-sync}) \\
452    \> UPDATE\_R\_STAR or UPDATE\_SURF\_DR \` (NonLin-FS only)\\
453    \> SOLVE\_FOR\_PRESSURE \\
454    \>\> CALC\_DIV\_GHAT \` $\eta^*$ (\ref{eq:nstar-sync}) \\
455    \>\> CG2D \` $\eta^{n+1}$ (\ref{eq:elliptic-sync}) \\
456    \> MOMENTUM\_CORRECTION\_STEP  \\
457    \>\> CALC\_GRAD\_PHI\_SURF \` $\nabla \eta^{n+1}$ \\
458    \>\> CORRECTION\_STEP \` $u^{n+1}$,$v^{n+1}$ (\ref{eq:v-n+1-sync})\\
459    \> TRACERS\_CORRECTION\_STEP  \\
460    \>\> CYCLE\_TRACER \` $\theta^{n+1}$ \\
461    \>\> FILTER \` Shapiro Filter, Zonal Filter (FFT) \\
462    \>\> CONVECTIVE\_ADJUSTMENT \` \\
463    \end{tabbing} \end{minipage} } \end{center}
464    \caption{
465    Calling tree for the overall synchronous algorithm using
466    Adams-Bashforth time-stepping.
467    The place where the model geometry
468    ({\em hFac} factors) is updated is added here but is only relevant
469    for the non-linear free-surface algorithm.
470    For completeness, the external forcing,
471    ocean and atmospheric physics have been added, although they are mainly
472    optional}
473    \label{fig:call-tree-adams-bashforth-sync}
474    \end{figure}
475    
476    The Adams-Bashforth extrapolation of explicit tendencies fits neatly
477    into the pressure method algorithm when all state variables are
478    co-located in time. Fig.~\ref{fig:adams-bashforth-sync} illustrates
479    the location of variables in time and the evolution of the algorithm
480    with time. The algorithm can be represented by the sequential solution
481    of the follow equations:
482    \begin{eqnarray}
483    G_{\theta,S}^{n} & = & G_{\theta,S} ( u^n, \theta^n, S^n )
484    \label{eq:Gt-n-sync} \\
485    G_{\theta,S}^{(n+1/2)} & = & (3/2+\epsilon_{AB}) G_{\theta,S}^{n}-(1/2+\epsilon_{AB}) G_{\theta,S}^{n-1}
486    \label{eq:Gt-n+5-sync} \\
487    (\theta^*,S^*) & = & (\theta^{n},S^{n}) + \Delta t G_{\theta,S}^{(n+1/2)}
488    \label{eq:tstar-sync} \\
489    (\theta^{n+1},S^{n+1}) & = & {\cal L}^{-1}_{\theta,S} (\theta^*,S^*)
490    \label{eq:t-n+1-sync} \\
491    \phi^n_{hyd} & = & \int b(\theta^n,S^n) dr
492    \label{eq:phi-hyd-sync} \\
493    \vec{\bf G}_{\vec{\bf v}}^{n} & = & \vec{\bf G}_{\vec{\bf v}} ( \vec{\bf v}^n, \phi^n_{hyd} )
494    \label{eq:Gv-n-sync} \\
495    \vec{\bf G}_{\vec{\bf v}}^{(n+1/2)} & = & (3/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n} - (1/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n-1}
496    \label{eq:Gv-n+5-sync} \\
497    \vec{\bf v}^{*} & = & \vec{\bf v}^{n} + \Delta t \vec{\bf G}_{\vec{\bf v}}^{(n+1/2)}
498    \label{eq:vstar-sync} \\
499    \vec{\bf v}^{**} & = & {\cal L}_{\vec{\bf v}}^{-1} ( \vec{\bf v}^* )
500    \label{eq:vstarstar-sync} \\
501    \eta^* & = & \epsilon_{fs} \left( \eta^{n} + \Delta t (P-E) \right)- \Delta t
502      \nabla \cdot H \widehat{ \vec{\bf v}^{**} }
503    \label{eq:nstar-sync} \\
504    \nabla \cdot g H \nabla \eta^{n+1} & - & \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2}
505    ~ = ~ - \frac{\eta^*}{\Delta t^2}
506    \label{eq:elliptic-sync} \\
507    \vec{\bf v}^{n+1} & = & \vec{\bf v}^{*} - \Delta t g \nabla \eta^{n+1}
508    \label{eq:v-n+1-sync}
509    \end{eqnarray}
510    Fig.~\ref{fig:adams-bashforth-sync} illustrates the location of
511    variables in time and evolution of the algorithm with time. The
512    Adams-Bashforth extrapolation of the tracer tendencies is illustrated
513    by the dashed arrow, the prediction at $n+1$ is indicated by the
514    solid arc. Inversion of the implicit terms, ${\cal
515    L}^{-1}_{\theta,S}$, then yields the new tracer fields at $n+1$. All
516    these operations are carried out in subroutine {\em THERMODYNAMICS} an
517    subsidiaries, which correspond to equations \ref{eq:Gt-n-sync} to
518    \ref{eq:t-n+1-sync}.
519    Similarly illustrated is the Adams-Bashforth extrapolation of
520    accelerations, stepping forward and solving of implicit viscosity and
521    surface pressure gradient terms, corresponding to equations
522    \ref{eq:Gv-n-sync} to \ref{eq:v-n+1-sync}.
523    These operations are carried out in subroutines {\em DYNAMCIS}, {\em
524    SOLVE\_FOR\_PRESSURE} and {\em MOMENTUM\_CORRECTION\_STEP}. This, then,
525    represents an entire algorithm for stepping forward the model one
526    time-step. The corresponding calling tree is given in
527    \ref{fig:call-tree-adams-bashforth-sync}.
528    
529    \section{Staggered baroclinic time-stepping}
530    \label{sect:adams-bashforth-staggered}
531    \begin{rawhtml}
532    <!-- CMIREDIR:adams_bashforth_staggered: -->
533    \end{rawhtml}
534    
535    \begin{figure}
536    \begin{center}
537    \resizebox{5.5in}{!}{\includegraphics{part2/adams-bashforth-staggered.eps}}
538    \end{center}
539    \caption{
540    A schematic of the explicit Adams-Bashforth and implicit time-stepping
541    phases of the algorithm but with staggering in time of thermodynamic
542    variables with the flow.
543    Explicit momentum tendencies are evaluated at time level $n-1/2$ as a
544    function of the flow field at that time level $n-1/2$.
545    The explicit tendency from the previous time level, $n-3/2$, is used to
546    extrapolate tendencies to $n$ (dashed arrow).
547    The hydrostatic pressure/geo-potential $\phi_{hyd}$ is evaluated directly
548    at time level $n$ (vertical arrows) and used with the extrapolated tendencies
549    to step forward the flow variables from $n-1/2$ to $n+1/2$ (solid arc-arrow).
550    The implicit-in-time operator ${\cal L_{u,v}}$ (vertical arrows) is
551    then applied to the previous estimation of the the flow field ($*$-variables)
552    and yields to the two velocity components $u,v$ at time level $n+1/2$.
553    These are then used to calculate the advection term (dashed arc-arrow)
554    of the thermo-dynamics tendencies at time step $n$.
555    The extrapolated thermodynamics tendency, from time level $n-1$ and $n$
556    to $n+1/2$, allows thermodynamic variables to be stably integrated
557    forward-in-time (solid arc-arrow) up to time level $n+1$.
558    }
559    \label{fig:adams-bashforth-staggered}
560    \end{figure}
561    
562    For well stratified problems, internal gravity waves may be the
563    limiting process for determining a stable time-step. In the
564    circumstance, it is more efficient to stagger in time the
565    thermodynamic variables with the flow
566    variables. Fig.~\ref{fig:adams-bashforth-staggered} illustrates the
567    staggering and algorithm. The key difference between this and
568    Fig.~\ref{fig:adams-bashforth-sync} is that the thermodynamic variables
569    are solved after the dynamics, using the recently updated flow field.
570    This essentially allows the gravity wave terms to leap-frog in
571    time giving second order accuracy and more stability.
572    
573    The essential change in the staggered algorithm is that the
574    thermodynamics solver is delayed from half a time step,
575    allowing the use of the most recent velocities to compute
576    the advection terms. Once the thermodynamics fields are
577    updated, the hydrostatic pressure is computed
578    to step frowrad the dynamics
579    Note that the pressure gradient must also be taken out of the
580    Adams-Bashforth extrapolation. Also, retaining the integer time-levels,
581    $n$ and $n+1$, does not give a user the sense of where variables are
582    located in time.  Instead, we re-write the entire algorithm,
583    \ref{eq:Gt-n-sync} to \ref{eq:v-n+1-sync}, annotating the
584    position in time of variables appropriately:
585    \begin{eqnarray}
586    \vec{\bf G}_{\vec{\bf v}}^{n-1/2} & = & \vec{\bf G}_{\vec{\bf v}} ( \vec{\bf v}^{n-1/2} )
587    \label{eq:Gv-n-staggered} \\
588    \vec{\bf G}_{\vec{\bf v}}^{(n)} & = & (3/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n-1/2} - (1/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n-3/2}
589    \label{eq:Gv-n+5-staggered} \\
590    \phi^{n}_{hyd} & = & \int b(\theta^{n},S^{n}) dr
591    \label{eq:phi-hyd-staggered} \\
592    \vec{\bf v}^{*} & = & \vec{\bf v}^{n-1/2} + \Delta t \left( \vec{\bf G}_{\vec{\bf v}}^{(n)} - \nabla \phi_{hyd}^{n} \right)
593    \label{eq:vstar-staggered} \\
594    \vec{\bf v}^{**} & = & {\cal L}_{\vec{\bf v}}^{-1} ( \vec{\bf v}^* )
595    \label{eq:vstarstar-staggered} \\
596    \eta^* & = & \epsilon_{fs} \left( \eta^{n-1/2} + \Delta t (P-E)^n \right)- \Delta t
597      \nabla \cdot H \widehat{ \vec{\bf v}^{**} }
598    \label{eq:nstar-staggered} \\
599    \nabla \cdot g H \nabla \eta^{n+1/2} & - & \frac{\epsilon_{fs} \eta^{n+1/2}}{\Delta t^2}
600    ~ = ~ - \frac{\eta^*}{\Delta t^2}
601    \label{eq:elliptic-staggered} \\
602    \vec{\bf v}^{n+1/2} & = & \vec{\bf v}^{*} - \Delta t g \nabla \eta^{n+1/2}
603    \label{eq:v-n+1-staggered} \\
604    G_{\theta,S}^{n} & = & G_{\theta,S} ( u^{n+1/2}, \theta^{n}, S^{n} )
605    \label{eq:Gt-n-staggered} \\
606    G_{\theta,S}^{(n+1/2)} & = & (3/2+\epsilon_{AB}) G_{\theta,S}^{n}-(1/2+\epsilon_{AB}) G_{\theta,S}^{n-1}
607    \label{eq:Gt-n+5-staggered} \\
608    (\theta^*,S^*) & = & (\theta^{n},S^{n}) + \Delta t G_{\theta,S}^{(n+1/2)}
609    \label{eq:tstar-staggered} \\
610    (\theta^{n+1},S^{n+1}) & = & {\cal L}^{-1}_{\theta,S} (\theta^*,S^*)
611    \label{eq:t-n+1-staggered} \\
612    \end{eqnarray}
613    The corresponding calling tree is given in
614    \ref{fig:call-tree-adams-bashforth-staggered}.
615    The staggered algorithm is activated with the run-time flag
616    {\bf staggerTimeStep=.TRUE.} in parameter file {\em data},
617    namelist {\em PARM01}.
618    
619    \begin{figure}
620    \begin{center} \fbox{ \begin{minipage}{4.7in} \begin{tabbing}
621    aaa \= aaa \= aaa \= aaa \= aaa \= aaa \kill
622    FORWARD\_STEP \\
623    \>\> EXTERNAL\_FIELDS\_LOAD\\
624    \>\> DO\_ATMOSPHERIC\_PHYS \\
625    \>\> DO\_OCEANIC\_PHYS \\
626    \> DYNAMICS \\
627    \>\> CALC\_PHI\_HYD \` $\phi_{hyd}^n$ (\ref{eq:phi-hyd-staggered}) \\
628    \>\> MOM\_FLUXFORM or MOM\_VECINV \` $G_{\vec{\bf v}}^{n-1/2}$
629        (\ref{eq:Gv-n-staggered})\\
630    \>\> TIMESTEP \` $\vec{\bf v}^*$ (\ref{eq:Gv-n+5-staggered},
631                                      \ref{eq:vstar-staggered}) \\
632    \>\> IMPLDIFF \` $\vec{\bf v}^{**}$ (\ref{eq:vstarstar-staggered}) \\
633    \> UPDATE\_R\_STAR or UPDATE\_SURF\_DR \` (NonLin-FS only)\\
634    \> SOLVE\_FOR\_PRESSURE \\
635    \>\> CALC\_DIV\_GHAT \` $\eta^*$ (\ref{eq:nstar-staggered}) \\
636    \>\> CG2D \` $\eta^{n+1/2}$ (\ref{eq:elliptic-staggered}) \\
637    \> MOMENTUM\_CORRECTION\_STEP  \\
638    \>\> CALC\_GRAD\_PHI\_SURF \` $\nabla \eta^{n+1/2}$ \\
639    \>\> CORRECTION\_STEP \` $u^{n+1/2}$,$v^{n+1/2}$ (\ref{eq:v-n+1-staggered})\\
640    \> THERMODYNAMICS \\
641    \>\> CALC\_GT \\
642    \>\>\> GAD\_CALC\_RHS \` $G_\theta^n = G_\theta( u, \theta^n )$
643         (\ref{eq:Gt-n-staggered})\\
644    \>\>\> EXTERNAL\_FORCING \` $G_\theta^n = G_\theta^n + {\cal Q}$ \\
645    \>\>\> ADAMS\_BASHFORTH2 \` $G_\theta^{(n+1/2)}$ (\ref{eq:Gt-n+5-staggered}) \\
646    \>\> TIMESTEP\_TRACER \` $\tau^*$ (\ref{eq:tstar-staggered}) \\
647    \>\> IMPLDIFF \` $\tau^{(n+1)}$ (\ref{eq:t-n+1-staggered}) \\
648    \> TRACERS\_CORRECTION\_STEP  \\
649    \>\> CYCLE\_TRACER \` $\theta^{n+1}$ \\
650    \>\> FILTER \` Shapiro Filter, Zonal Filter (FFT) \\
651    \>\> CONVECTIVE\_ADJUSTMENT \` \\
652    \end{tabbing} \end{minipage} } \end{center}
653    \caption{
654    Calling tree for the overall staggered algorithm using
655    Adams-Bashforth time-stepping.
656    The place where the model geometry
657    ({\em hFac} factors) is updated is added here but is only relevant
658    for the non-linear free-surface algorithm.
659    }
660    \label{fig:call-tree-adams-bashforth-staggered}
661    \end{figure}
662    
663    The only difficulty with this approach is apparent in equation
664    \ref{eq:Gt-n-staggered} and illustrated by the dotted arrow
665    connecting $u,v^{n+1/2}$ with $G_\theta^{n}$. The flow used to advect
666    tracers around is not naturally located in time. This could be avoided
667    by applying the Adams-Bashforth extrapolation to the tracer field
668    itself and advecting that around but this approach is not yet
669    available. We're not aware of any detrimental effect of this
670    feature. The difficulty lies mainly in interpretation of what
671    time-level variables and terms correspond to.
672    
673    
674    \section{Non-hydrostatic formulation}
675    \label{sect:non-hydrostatic}
676    \begin{rawhtml}
677    <!-- CMIREDIR:non-hydrostatic_formulation: -->
678    \end{rawhtml}
679    
680    The non-hydrostatic formulation re-introduces the full vertical
681    momentum equation and requires the solution of a 3-D elliptic
682    equations for non-hydrostatic pressure perturbation. We still
683    intergrate vertically for the hydrostatic pressure and solve a 2-D
684    elliptic equation for the surface pressure/elevation for this reduces
685    the amount of work needed to solve for the non-hydrostatic pressure.
686    
687    The momentum equations are discretized in time as follows:
688    \begin{eqnarray}
689    \frac{1}{\Delta t} u^{n+1} + g \partial_x \eta^{n+1} + \partial_x \phi_{nh}^{n+1}
690    & = & \frac{1}{\Delta t} u^{n} + G_u^{(n+1/2)} \label{eq:discrete-time-u-nh} \\
691    \frac{1}{\Delta t} v^{n+1} + g \partial_y \eta^{n+1} + \partial_y \phi_{nh}^{n+1}
692    & = & \frac{1}{\Delta t} v^{n} + G_v^{(n+1/2)} \label{eq:discrete-time-v-nh} \\
693    \frac{1}{\Delta t} w^{n+1} + \partial_r \phi_{nh}^{n+1}
694    & = & \frac{1}{\Delta t} w^{n} + G_w^{(n+1/2)} \label{eq:discrete-time-w-nh} \\
695    \end{eqnarray}
696    which must satisfy the discrete-in-time depth integrated continuity,
697    equation~\ref{eq:discrete-time-backward-free-surface} and the local continuity equation
698    \begin{equation}
699    \partial_x u^{n+1} + \partial_y v^{n+1} + \partial_r w^{n+1} = 0
700    \label{eq:non-divergence-nh}
701    \end{equation}
702    As before, the explicit predictions for momentum are consolidated as:
703  \begin{eqnarray*}  \begin{eqnarray*}
704  \vec{\bf v}^* & = &  u^* & = & u^n + \Delta t G_u^{(n+1/2)} \\
705  \vec{\bf v} ^{n} + \Delta t \vec{\bf G}_{\vec{\bf v}} ^{(n+1/2)}  v^* & = & v^n + \Delta t G_v^{(n+1/2)} \\
706  + \Delta t  {\bf \nabla}_h {\phi'_{hyd}}^{n+1/2}  w^* & = & w^n + \Delta t G_w^{(n+1/2)}
 \\  
 \dot{r}^* & = &  
 \dot{r} ^{n} + \Delta t G_{\dot{r}} ^{(n+1/2)}  
707  \end{eqnarray*}  \end{eqnarray*}
708    but this time we introduce an intermediate step by splitting the
709    tendancy of the flow as follows:
710    \begin{eqnarray}
711    u^{n+1} = u^{**} - \Delta t \partial_x \phi_{nh}^{n+1}
712    & &
713    u^{**} = u^{*} - \Delta t g \partial_x \eta^{n+1} \\
714    v^{n+1} = v^{**} - \Delta t \partial_y \phi_{nh}^{n+1}
715    & &
716    v^{**} = v^{*} - \Delta t g \partial_y \eta^{n+1}
717    \end{eqnarray}
718    Substituting into the depth integrated continuity
719    (equation~\ref{eq:discrete-time-backward-free-surface}) gives
720    \begin{equation}
721    \partial_x H \partial_x \left( g \eta^{n+1} + \widehat{\phi}_{nh}^{n+1} \right)
722    +
723    \partial_y H \partial_y \left( g \eta^{n+1} + \widehat{\phi}_{nh}^{n+1} \right)
724     - \frac{\epsilon_{fs}\eta^*}{\Delta t^2}
725    = - \frac{\eta^*}{\Delta t^2}
726    \end{equation}
727    which is approximated by equation
728    \ref{eq:elliptic-backward-free-surface} on the basis that i)
729    $\phi_{nh}^{n+1}$ is not yet known and ii) $\nabla \widehat{\phi}_{nh}
730    << g \nabla \eta$. If \ref{eq:elliptic-backward-free-surface} is
731    solved accurately then the implication is that $\widehat{\phi}_{nh}
732    \approx 0$ so that thet non-hydrostatic pressure field does not drive
733    barotropic motion.
734    
735    The flow must satisfy non-divergence
736    (equation~\ref{eq:non-divergence-nh}) locally, as well as depth
737    integrated, and this constraint is used to form a 3-D elliptic
738    equations for $\phi_{nh}^{n+1}$:
739    \begin{equation}
740    \partial_{xx} \phi_{nh}^{n+1} + \partial_{yy} \phi_{nh}^{n+1} +
741    \partial_{rr} \phi_{nh}^{n+1} =
742    \partial_x u^{**} + \partial_y v^{**} + \partial_r w^{*}
743    \end{equation}
744    
745    The entire algorithm can be summarized as the sequential solution of
746    the following equations:
747    \begin{eqnarray}
748    u^{*} & = & u^{n} + \Delta t G_u^{(n+1/2)} \label{eq:ustar-nh} \\
749    v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-nh} \\
750    w^{*} & = & w^{n} + \Delta t G_w^{(n+1/2)} \label{eq:wstar-nh} \\
751    \eta^* ~ = ~ \epsilon_{fs} \left( \eta^{n} + \Delta t (P-E) \right)
752    & - & \Delta t
753      \partial_x H \widehat{u^{*}}
754    + \partial_y H \widehat{v^{*}}
755    \\
756      \partial_x g H \partial_x \eta^{n+1}
757    + \partial_y g H \partial_y \eta^{n+1}
758    & - & \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2}
759    ~ = ~
760    - \frac{\eta^*}{\Delta t^2}
761    \label{eq:elliptic-nh}
762    \\
763    u^{**} & = & u^{*} - \Delta t g \partial_x \eta^{n+1} \label{eq:unx-nh}\\
764    v^{**} & = & v^{*} - \Delta t g \partial_y \eta^{n+1} \label{eq:vnx-nh}\\
765    \partial_{xx} \phi_{nh}^{n+1} + \partial_{yy} \phi_{nh}^{n+1} +
766    \partial_{rr} \phi_{nh}^{n+1} & = &
767    \partial_x u^{**} + \partial_y v^{**} + \partial_r w^{*} \\
768    u^{n+1} & = & u^{**} - \Delta t \partial_x \phi_{nh}^{n+1} \label{eq:un+1-nh}\\
769    v^{n+1} & = & v^{**} - \Delta t \partial_y \phi_{nh}^{n+1} \label{eq:vn+1-nh}\\
770    \partial_r w^{n+1} & = & - \partial_x u^{n+1} - \partial_y v^{n+1}
771    \end{eqnarray}
772    where the last equation is solved by vertically integrating for
773    $w^{n+1}$.
774    
 %---------------------------------------------------------------------  
775    
 \subsection{Surface pressure}  
776    
777  Substituting \ref{eq-tDsC-Hmom} into \ref{eq-tDsC-cont}, assuming  \section{Variants on the Free Surface}
778  $\epsilon_{nh} = 0$ yields a Helmholtz equation for ${\eta}^{n+1}$:  
779    We now describe the various formulations of the free-surface that
780    include non-linear forms, implicit in time using Crank-Nicholson,
781    explicit and [one day] split-explicit. First, we'll reiterate the
782    underlying algorithm but this time using the notation consistent with
783    the more general vertical coordinate $r$. The elliptic equation for
784    free-surface coordinate (units of $r$), corresponding to
785    \ref{eq:discrete-time-backward-free-surface}, and
786    assuming no non-hydrostatic effects ($\epsilon_{nh} = 0$) is:
787  \begin{eqnarray}  \begin{eqnarray}
788  \epsilon_{fs} {\eta}^{n+1} -  \epsilon_{fs} {\eta}^{n+1} -
789  {\bf \nabla}_h \cdot \Delta t^2 (R_o-R_{fixed})  {\bf \nabla}_h \cdot \Delta t^2 (R_o-R_{fixed}) {\bf \nabla}_h b_s
790  {\bf \nabla}_h b_s {\eta}^{n+1}  {\eta}^{n+1} = {\eta}^*
 = {\eta}^*  
791  \label{eq-solve2D}  \label{eq-solve2D}
792  \end{eqnarray}  \end{eqnarray}
793  where  where
# Line 356  where Line 798  where
798  \label{eq-solve2D_rhs}  \label{eq-solve2D_rhs}
799  \end{eqnarray}  \end{eqnarray}
800    
801  Once ${\eta}^{n+1}$ has been found substituting into \ref{eq-tDsC-Hmom}  \fbox{ \begin{minipage}{4.75in}
802  would yield $\vec{\bf v}^{n+1}$ if the model is hydrostatic  {\em S/R SOLVE\_FOR\_PRESSURE} ({\em solve\_for\_pressure.F})
803  ($\epsilon_{nh}=0$):  
804    $u^*$: {\bf GuNm1} ({\em DYNVARS.h})
805    
806    $v^*$: {\bf GvNm1} ({\em DYNVARS.h})
807    
808    $\eta^*$: {\bf cg2d\_b} (\em SOLVE\_FOR\_PRESSURE.h)
809    
810    $\eta^{n+1}$: {\bf etaN} (\em DYNVARS.h)
811    
812    \end{minipage} }
813    
814    
815    Once ${\eta}^{n+1}$ has been found, substituting into
816    \ref{eq:discrete-time-u,eq:discrete-time-v} yields $\vec{\bf v}^{n+1}$ if the model is
817    hydrostatic ($\epsilon_{nh}=0$):
818  $$  $$
819  \vec{\bf v}^{n+1} = \vec{\bf v}^{*}  \vec{\bf v}^{n+1} = \vec{\bf v}^{*}
820  - \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}  - \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}
# Line 366  $$ Line 822  $$
822    
823  This is known as the correction step. However, when the model is  This is known as the correction step. However, when the model is
824  non-hydrostatic ($\epsilon_{nh}=1$) we need an additional step and an  non-hydrostatic ($\epsilon_{nh}=1$) we need an additional step and an
825  additional equation for $\phi'_{nh}$. This is obtained by  additional equation for $\phi'_{nh}$. This is obtained by substituting
826  substituting \ref{eq-tDsC-Hmom} and \ref{eq-tDsC-Vmom} into  \ref{eq:discrete-time-u-nh}, \ref{eq:discrete-time-v-nh} and \ref{eq:discrete-time-w-nh}
827  \ref{eq-tDsC-cont}:  into continuity:
828  \begin{equation}  \begin{equation}
829  \left[ {\bf \nabla}_h^2 + \partial_{rr} \right] {\phi'_{nh}}^{n+1}  \left[ {\bf \nabla}_h^2 + \partial_{rr} \right] {\phi'_{nh}}^{n+1}
830  = \frac{1}{\Delta t} \left(  = \frac{1}{\Delta t} \left(
# Line 389  Finally, the horizontal velocities at th Line 845  Finally, the horizontal velocities at th
845  - \epsilon_{nh} \Delta t {\bf \nabla}_h {\phi'_{nh}}^{n+1}  - \epsilon_{nh} \Delta t {\bf \nabla}_h {\phi'_{nh}}^{n+1}
846  \end{equation}  \end{equation}
847  and the vertical velocity is found by integrating the continuity  and the vertical velocity is found by integrating the continuity
848  equation vertically.  equation vertically.  Note that, for the convenience of the restart
849  Note that, for convenience regarding the restart procedure,  procedure, the vertical integration of the continuity equation has
850  the integration of the continuity equation has been  been moved to the beginning of the time step (instead of at the end),
 moved at the beginning of the time step (instead of at the end),  
851  without any consequence on the solution.  without any consequence on the solution.
852    
853  Regarding the implementation, all those computation are done  \fbox{ \begin{minipage}{4.75in}
854  within the routine {\it SOLVE\_FOR\_PRESSURE} and its dependent  {\em S/R CORRECTION\_STEP} ({\em correction\_step.F})
855  {\it CALL}s.  
856  The standard method to solve the 2D elliptic problem (\ref{eq-solve2D})  $\eta^{n+1}$: {\bf etaN} (\em DYNVARS.h)
857  uses the conjugate gradient method (routine {\it CG2D}); The  
858  the solver matrix and conjugate gradient operator are only function  $\phi_{nh}^{n+1}$: {\bf phi\_nh} (\em DYNVARS.h)
859  of the discretized domain and are therefore evaluated separately,  
860  before the time iteration loop, within {\it INI\_CG2D}.  $u^*$: {\bf GuNm1} ({\em DYNVARS.h})
861  The computation of the RHS $\eta^*$ is partly  
862  done in {\it CALC\_DIV\_GHAT} and in {\it SOLVE\_FOR\_PRESSURE}.  $v^*$: {\bf GvNm1} ({\em DYNVARS.h})
863    
864  The same method is applied for the non hydrostatic part, using  $u^{n+1}$: {\bf uVel} ({\em DYNVARS.h})
865  a conjugate gradient 3D solver ({\it CG3D}) that is initialized  
866  in {\it INI\_CG3D}. The RHS terms of 2D and 3D problems  $v^{n+1}$: {\bf vVel} ({\em DYNVARS.h})
867  are computed together, within the same part of the code.  
868    \end{minipage} }
869    
870    
871    
872    Regarding the implementation of the surface pressure solver, all
873    computation are done within the routine {\it SOLVE\_FOR\_PRESSURE} and
874    its dependent calls.  The standard method to solve the 2D elliptic
875    problem (\ref{eq-solve2D}) uses the conjugate gradient method (routine
876    {\it CG2D}); the solver matrix and conjugate gradient operator are
877    only function of the discretized domain and are therefore evaluated
878    separately, before the time iteration loop, within {\it INI\_CG2D}.
879    The computation of the RHS $\eta^*$ is partly done in {\it
880    CALC\_DIV\_GHAT} and in {\it SOLVE\_FOR\_PRESSURE}.
881    
882    The same method is applied for the non hydrostatic part, using a
883    conjugate gradient 3D solver ({\it CG3D}) that is initialized in {\it
884    INI\_CG3D}. The RHS terms of 2D and 3D problems are computed together
885    at the same point in the code.
886    
887    
888    
 \newpage  
 %-----------------------------------------------------------------------------------  
889  \subsection{Crank-Nickelson barotropic time stepping}  \subsection{Crank-Nickelson barotropic time stepping}
890    
891  The full implicit time stepping described previously is unconditionally stable  The full implicit time stepping described previously is
892  but damps the fast gravity waves, resulting in a loss of  unconditionally stable but damps the fast gravity waves, resulting in
893  gravity potential energy.  a loss of potential energy.  The modification presented now allows one
894  The modification presented hereafter allows to combine an implicit part  to combine an implicit part ($\beta,\gamma$) and an explicit part
895  ($\beta,\gamma$) and an explicit part ($1-\beta,1-\gamma$) for the surface  ($1-\beta,1-\gamma$) for the surface pressure gradient ($\beta$) and
896  pressure gradient ($\beta$) and for the barotropic flow divergence ($\gamma$).  for the barotropic flow divergence ($\gamma$).
897  \\  \\
898  For instance, $\beta=\gamma=1$ is the previous fully implicit scheme;  For instance, $\beta=\gamma=1$ is the previous fully implicit scheme;
899  $\beta=\gamma=1/2$ is the non damping (energy conserving), unconditionally  $\beta=\gamma=1/2$ is the non damping (energy conserving), unconditionally
# Line 431  In the code, $\beta,\gamma$ are defined Line 904  In the code, $\beta,\gamma$ are defined
904  {\it implicSurfPress}, {\it implicDiv2DFlow}. They are read from  {\it implicSurfPress}, {\it implicDiv2DFlow}. They are read from
905  the main data file "{\it data}" and are set by default to 1,1.  the main data file "{\it data}" and are set by default to 1,1.
906    
907  Equations \ref{eq-tDsC-Hmom} and \ref{eq-tDsC-eta} are modified as follows:  Equations \ref{eq:ustar-backward-free-surface} --
908    \ref{eq:vn+1-backward-free-surface} are modified as follows:
909  $$  $$
910  \frac{ \vec{\bf v}^{n+1} }{ \Delta t }  \frac{ \vec{\bf v}^{n+1} }{ \Delta t }
911  + {\bf \nabla}_h b_s [ \beta {\eta}^{n+1} + (1-\beta) {\eta}^{n} ]  + {\bf \nabla}_h b_s [ \beta {\eta}^{n+1} + (1-\beta) {\eta}^{n} ]
# Line 457  where: Line 931  where:
931  [ \gamma \vec{\bf v}^* + (1-\gamma) \vec{\bf v}^{n}] dr  [ \gamma \vec{\bf v}^* + (1-\gamma) \vec{\bf v}^{n}] dr
932  \end{eqnarray*}  \end{eqnarray*}
933  \\  \\
934  In the hydrostatic case ($\epsilon_{nh}=0$),  In the hydrostatic case ($\epsilon_{nh}=0$), allowing us to find
935  this allow to find ${\eta}^{n+1}$, according to:  ${\eta}^{n+1}$, thus:
936  $$  $$
937  \epsilon_{fs} {\eta}^{n+1} -  \epsilon_{fs} {\eta}^{n+1} -
938  {\bf \nabla}_h \cdot \beta\gamma \Delta t^2 b_s (R_o - R_{fixed})  {\bf \nabla}_h \cdot \beta\gamma \Delta t^2 b_s (R_o - R_{fixed})
# Line 472  $$ Line 946  $$
946  $$  $$
947    
948  The non-hydrostatic part is solved as described previously.  The non-hydrostatic part is solved as described previously.
949  \\ \\  
950  N.B:  Note that:
951  \\  \begin{enumerate}
952   a) The non-hydrostatic part of the code has not yet been  \item The non-hydrostatic part of the code has not yet been
953  updated, %since it falls out of the purpose of this test,  updated, so that this option cannot be used with $(\beta,\gamma) \neq (1,1)$.
954  so that this option cannot be used with $(\beta,\gamma) \neq (1,1)$.  \item The stability criteria with Crank-Nickelson time stepping
955  \\  for the pure linear gravity wave problem in cartesian coordinates is:
956  b) To remind, the stability criteria with the Crank-Nickelson time stepping  \begin{itemize}
957  for the pure linear gravity wave problem in cartesian coordinate is:  \item $\beta + \gamma < 1$ : unstable
958  \\  \item $\beta \geq 1/2$ and $ \gamma \geq 1/2$ : stable
959  $\star$~ $\beta + \gamma < 1$ : unstable  \item $\beta + \gamma \geq 1$ : stable if
 \\  
 $\star$~ $\beta \geq 1/2$ and $ \gamma \geq 1/2$ : stable  
 \\  
 $\star$~ $\beta + \gamma \geq 1$ : stable if  
 %, for all wave length $(k\Delta x,l\Delta y)$  
960  $$  $$
961  c_{max}^2 (\beta - 1/2)(\gamma - 1/2) + 1 \geq 0  c_{max}^2 (\beta - 1/2)(\gamma - 1/2) + 1 \geq 0
962  $$  $$
# Line 502  $$ Line 971  $$
971  c_{max} =  2 \Delta t \: \sqrt{g H} \:  c_{max} =  2 \Delta t \: \sqrt{g H} \:
972  \sqrt{ \frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} }  \sqrt{ \frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} }
973  $$  $$
974    \end{itemize}
975    \end{enumerate}
976    

Legend:
Removed from v.1.5  
changed lines
  Added in v.1.19

  ViewVC Help
Powered by ViewVC 1.1.22