12 |
|
|
13 |
|
|
14 |
\section{Time-stepping} |
\section{Time-stepping} |
15 |
|
\begin{rawhtml} |
16 |
|
<!-- CMIREDIR:time-stepping: --> |
17 |
|
\end{rawhtml} |
18 |
|
|
19 |
The equations of motion integrated by the model involve four |
The equations of motion integrated by the model involve four |
20 |
prognostic equations for flow, $u$ and $v$, temperature, $\theta$, and |
prognostic equations for flow, $u$ and $v$, temperature, $\theta$, and |
21 |
salt/moisture, $S$, and three diagnostic equations for vertical flow, |
salt/moisture, $S$, and three diagnostic equations for vertical flow, |
65 |
described in section \ref{sect:nonlinear-freesurface}. |
described in section \ref{sect:nonlinear-freesurface}. |
66 |
|
|
67 |
|
|
68 |
\section{Pressure method with rigid-lid} \label{sect:pressure-method-rigid-lid} |
\section{Pressure method with rigid-lid} |
69 |
|
\label{sect:pressure-method-rigid-lid} |
70 |
|
\begin{rawhtml} |
71 |
|
<!-- CMIREDIR:pressure_method_rigid_lid: --> |
72 |
|
\end{rawhtml} |
73 |
|
|
74 |
\begin{figure} |
\begin{figure} |
75 |
\begin{center} |
\begin{center} |
95 |
\> SOLVE\_FOR\_PRESSURE \\ |
\> SOLVE\_FOR\_PRESSURE \\ |
96 |
\>\> CALC\_DIV\_GHAT \` $H\widehat{u^*}$,$H\widehat{v^*}$ (\ref{eq:elliptic}) \\ |
\>\> CALC\_DIV\_GHAT \` $H\widehat{u^*}$,$H\widehat{v^*}$ (\ref{eq:elliptic}) \\ |
97 |
\>\> CG2D \` $\eta^{n+1}$ (\ref{eq:elliptic}) \\ |
\>\> CG2D \` $\eta^{n+1}$ (\ref{eq:elliptic}) \\ |
98 |
\> THE\_CORRECTION\_STEP \\ |
\> MOMENTUM\_CORRECTION\_STEP \\ |
99 |
\>\> CALC\_GRAD\_PHI\_SURF \` $\nabla \eta^{n+1}$ \\ |
\>\> CALC\_GRAD\_PHI\_SURF \` $\nabla \eta^{n+1}$ \\ |
100 |
\>\> CORRECTION\_STEP \` $u^{n+1}$,$v^{n+1}$ (\ref{eq:un+1-rigid-lid},\ref{eq:vn+1-rigid-lid}) |
\>\> CORRECTION\_STEP \` $u^{n+1}$,$v^{n+1}$ (\ref{eq:un+1-rigid-lid},\ref{eq:vn+1-rigid-lid}) |
101 |
\end{tabbing} \end{minipage} } \end{center} |
\end{tabbing} \end{minipage} } \end{center} |
211 |
|
|
212 |
\section{Pressure method with implicit linear free-surface} |
\section{Pressure method with implicit linear free-surface} |
213 |
\label{sect:pressure-method-linear-backward} |
\label{sect:pressure-method-linear-backward} |
214 |
|
\begin{rawhtml} |
215 |
|
<!-- CMIREDIR:pressure_method_linear_backward: --> |
216 |
|
\end{rawhtml} |
217 |
|
|
218 |
The rigid-lid approximation filters out external gravity waves |
The rigid-lid approximation filters out external gravity waves |
219 |
subsequently modifying the dispersion relation of barotropic Rossby |
subsequently modifying the dispersion relation of barotropic Rossby |
290 |
|
|
291 |
\section{Explicit time-stepping: Adams-Bashforth} |
\section{Explicit time-stepping: Adams-Bashforth} |
292 |
\label{sect:adams-bashforth} |
\label{sect:adams-bashforth} |
293 |
|
\begin{rawhtml} |
294 |
|
<!-- CMIREDIR:adams_bashforth: --> |
295 |
|
\end{rawhtml} |
296 |
|
|
297 |
In describing the the pressure method above we deferred describing the |
In describing the the pressure method above we deferred describing the |
298 |
time discretization of the explicit terms. We have historically used |
time discretization of the explicit terms. We have historically used |
308 |
\> THERMODYNAMICS \\ |
\> THERMODYNAMICS \\ |
309 |
\>\> CALC\_GT \\ |
\>\> CALC\_GT \\ |
310 |
\>\>\> GAD\_CALC\_RHS \` $G_\theta^n = G_\theta( u, \theta^n )$ \\ |
\>\>\> GAD\_CALC\_RHS \` $G_\theta^n = G_\theta( u, \theta^n )$ \\ |
311 |
\>\>\> EXTERNAL\_FORCING \` $G_\theta^n = G_\theta^n + {\cal Q}$ \\ |
\>either\>\> EXTERNAL\_FORCING \` $G_\theta^n = G_\theta^n + {\cal Q}$ \\ |
312 |
\>\>\> ADAMS\_BASHFORTH2 \` $G_\theta^{(n+1/2)}$ (\ref{eq:adams-bashforth2}) \\ |
\>\>\> ADAMS\_BASHFORTH2 \` $G_\theta^{(n+1/2)}$ (\ref{eq:adams-bashforth2}) \\ |
313 |
|
\>or\>\> EXTERNAL\_FORCING \` $G_\theta^{(n+1/2)} = G_\theta^{(n+1/2)} + {\cal Q}$ \\ |
314 |
\>\> TIMESTEP\_TRACER \` $\tau^*$ (\ref{eq:taustar}) \\ |
\>\> TIMESTEP\_TRACER \` $\tau^*$ (\ref{eq:taustar}) \\ |
315 |
\>\> IMPLDIFF \` $\tau^{(n+1)}$ (\ref{eq:tau-n+1-implicit}) |
\>\> IMPLDIFF \` $\tau^{(n+1)}$ (\ref{eq:tau-n+1-implicit}) |
316 |
\end{tabbing} \end{minipage} } \end{center} |
\end{tabbing} \end{minipage} } \end{center} |
347 |
and forcing evolves smoothly. Problems can, and do, arise when forcing |
and forcing evolves smoothly. Problems can, and do, arise when forcing |
348 |
or motions are high frequency and this corresponds to a reduced |
or motions are high frequency and this corresponds to a reduced |
349 |
stability compared to a simple forward time-stepping of such terms. |
stability compared to a simple forward time-stepping of such terms. |
350 |
|
The model offers the possibility to leave the forcing term outside the |
351 |
|
Adams-Bashforth extrapolation, by turning off the logical flag |
352 |
|
{\bf forcing\_In\_AB } (parameter file {\em data}, namelist {\em PARM01}, |
353 |
|
default value = True). |
354 |
|
|
355 |
A stability analysis for an oscillation equation should be given at this point. |
A stability analysis for an oscillation equation should be given at this point. |
356 |
\marginpar{AJA needs to find his notes on this...} |
\marginpar{AJA needs to find his notes on this...} |
360 |
|
|
361 |
|
|
362 |
\section{Implicit time-stepping: backward method} |
\section{Implicit time-stepping: backward method} |
363 |
|
\begin{rawhtml} |
364 |
|
<!-- CMIREDIR:implicit_time-stepping_backward: --> |
365 |
|
\end{rawhtml} |
366 |
|
|
367 |
Vertical diffusion and viscosity can be treated implicitly in time |
Vertical diffusion and viscosity can be treated implicitly in time |
368 |
using the backward method which is an intrinsic scheme. For tracers, |
using the backward method which is an intrinsic scheme. |
369 |
|
Recently, the option to treat the vertical advection |
370 |
|
implicitly has been added, but not yet tested; therefore, |
371 |
|
the description hereafter is limited to diffusion and viscosity. |
372 |
|
For tracers, |
373 |
the time discretized equation is: |
the time discretized equation is: |
374 |
\begin{equation} |
\begin{equation} |
375 |
\tau^{n+1} - \Delta t \partial_r \kappa_v \partial_r \tau^{n+1} = |
\tau^{n+1} - \Delta t \partial_r \kappa_v \partial_r \tau^{n+1} = |
400 |
stepping forward a tracer variable such as temperature. |
stepping forward a tracer variable such as temperature. |
401 |
|
|
402 |
In order to fit within the pressure method, the implicit viscosity |
In order to fit within the pressure method, the implicit viscosity |
403 |
must not alter the barotropic flow. In other words, it can on ly |
must not alter the barotropic flow. In other words, it can only |
404 |
redistribute momentum in the vertical. The upshot of this is that |
redistribute momentum in the vertical. The upshot of this is that |
405 |
although vertical viscosity may be backward implicit and |
although vertical viscosity may be backward implicit and |
406 |
unconditionally stable, no-slip boundary conditions may not be made |
unconditionally stable, no-slip boundary conditions may not be made |
408 |
|
|
409 |
\section{Synchronous time-stepping: variables co-located in time} |
\section{Synchronous time-stepping: variables co-located in time} |
410 |
\label{sect:adams-bashforth-sync} |
\label{sect:adams-bashforth-sync} |
411 |
|
\begin{rawhtml} |
412 |
|
<!-- CMIREDIR:adams_bashforth_sync: --> |
413 |
|
\end{rawhtml} |
414 |
|
|
415 |
\begin{figure} |
\begin{figure} |
416 |
\begin{center} |
\begin{center} |
431 |
\end{figure} |
\end{figure} |
432 |
|
|
433 |
\begin{figure} |
\begin{figure} |
434 |
\begin{center} \fbox{ \begin{minipage}{4.5in} \begin{tabbing} |
\begin{center} \fbox{ \begin{minipage}{4.7in} \begin{tabbing} |
435 |
aaa \= aaa \= aaa \= aaa \= aaa \= aaa \kill |
aaa \= aaa \= aaa \= aaa \= aaa \= aaa \kill |
436 |
FORWARD\_STEP \\ |
FORWARD\_STEP \\ |
437 |
|
\>\> EXTERNAL\_FIELDS\_LOAD\\ |
438 |
|
\>\> DO\_ATMOSPHERIC\_PHYS \\ |
439 |
|
\>\> DO\_OCEANIC\_PHYS \\ |
440 |
\> THERMODYNAMICS \\ |
\> THERMODYNAMICS \\ |
441 |
\>\> CALC\_GT \\ |
\>\> CALC\_GT \\ |
442 |
\>\>\> GAD\_CALC\_RHS \` $G_\theta^n = G_\theta( u, \theta^n )$ (\ref{eq:Gt-n-sync})\\ |
\>\>\> GAD\_CALC\_RHS \` $G_\theta^n = G_\theta( u, \theta^n )$ (\ref{eq:Gt-n-sync})\\ |
449 |
\>\> MOM\_FLUXFORM or MOM\_VECINV \` $G_{\vec{\bf v}}^n$ (\ref{eq:Gv-n-sync})\\ |
\>\> MOM\_FLUXFORM or MOM\_VECINV \` $G_{\vec{\bf v}}^n$ (\ref{eq:Gv-n-sync})\\ |
450 |
\>\> TIMESTEP \` $\vec{\bf v}^*$ (\ref{eq:Gv-n+5-sync}, \ref{eq:vstar-sync}) \\ |
\>\> TIMESTEP \` $\vec{\bf v}^*$ (\ref{eq:Gv-n+5-sync}, \ref{eq:vstar-sync}) \\ |
451 |
\>\> IMPLDIFF \` $\vec{\bf v}^{**}$ (\ref{eq:vstarstar-sync}) \\ |
\>\> IMPLDIFF \` $\vec{\bf v}^{**}$ (\ref{eq:vstarstar-sync}) \\ |
452 |
|
\> UPDATE\_R\_STAR or UPDATE\_SURF\_DR \` (NonLin-FS only)\\ |
453 |
\> SOLVE\_FOR\_PRESSURE \\ |
\> SOLVE\_FOR\_PRESSURE \\ |
454 |
\>\> CALC\_DIV\_GHAT \` $\eta^*$ (\ref{eq:nstar-sync}) \\ |
\>\> CALC\_DIV\_GHAT \` $\eta^*$ (\ref{eq:nstar-sync}) \\ |
455 |
\>\> CG2D \` $\eta^{n+1}$ (\ref{eq:elliptic-sync}) \\ |
\>\> CG2D \` $\eta^{n+1}$ (\ref{eq:elliptic-sync}) \\ |
456 |
\> THE\_CORRECTION\_STEP \\ |
\> MOMENTUM\_CORRECTION\_STEP \\ |
457 |
\>\> CALC\_GRAD\_PHI\_SURF \` $\nabla \eta^{n+1}$ \\ |
\>\> CALC\_GRAD\_PHI\_SURF \` $\nabla \eta^{n+1}$ \\ |
458 |
\>\> CORRECTION\_STEP \` $u^{n+1}$,$v^{n+1}$ (\ref{eq:v-n+1-sync}) |
\>\> CORRECTION\_STEP \` $u^{n+1}$,$v^{n+1}$ (\ref{eq:v-n+1-sync})\\ |
459 |
|
\> TRACERS\_CORRECTION\_STEP \\ |
460 |
|
\>\> CYCLE\_TRACER \` $\theta^{n+1}$ \\ |
461 |
|
\>\> FILTER \` Shapiro Filter, Zonal Filter (FFT) \\ |
462 |
|
\>\> CONVECTIVE\_ADJUSTMENT \` \\ |
463 |
\end{tabbing} \end{minipage} } \end{center} |
\end{tabbing} \end{minipage} } \end{center} |
464 |
\caption{ |
\caption{ |
465 |
Calling tree for the overall synchronous algorithm using |
Calling tree for the overall synchronous algorithm using |
466 |
Adams-Bashforth time-stepping.} |
Adams-Bashforth time-stepping. |
467 |
|
The place where the model geometry |
468 |
|
({\em hFac} factors) is updated is added here but is only relevant |
469 |
|
for the non-linear free-surface algorithm. |
470 |
|
For completeness, the external forcing, |
471 |
|
ocean and atmospheric physics have been added, although they are mainly |
472 |
|
optional} |
473 |
\label{fig:call-tree-adams-bashforth-sync} |
\label{fig:call-tree-adams-bashforth-sync} |
474 |
\end{figure} |
\end{figure} |
475 |
|
|
498 |
\label{eq:vstar-sync} \\ |
\label{eq:vstar-sync} \\ |
499 |
\vec{\bf v}^{**} & = & {\cal L}_{\vec{\bf v}}^{-1} ( \vec{\bf v}^* ) |
\vec{\bf v}^{**} & = & {\cal L}_{\vec{\bf v}}^{-1} ( \vec{\bf v}^* ) |
500 |
\label{eq:vstarstar-sync} \\ |
\label{eq:vstarstar-sync} \\ |
501 |
\eta^* & = & \epsilon_{fs} \left( \eta^{n} +P-E+R \right)- \Delta t |
\eta^* & = & \epsilon_{fs} \left( \eta^{n} + \Delta t (P-E) \right)- \Delta t |
502 |
\nabla \cdot H \widehat{ \vec{\bf v}^{**} } |
\nabla \cdot H \widehat{ \vec{\bf v}^{**} } |
503 |
\label{eq:nstar-sync} \\ |
\label{eq:nstar-sync} \\ |
504 |
\nabla \cdot g H \nabla \eta^{n+1} - \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2} |
\nabla \cdot g H \nabla \eta^{n+1} & - & \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2} |
505 |
& = & - \frac{\eta^*}{\Delta t^2} |
~ = ~ - \frac{\eta^*}{\Delta t^2} |
506 |
\label{eq:elliptic-sync} \\ |
\label{eq:elliptic-sync} \\ |
507 |
\vec{\bf v}^{n+1} & = & \vec{\bf v}^{*} - \Delta t g \nabla \eta^{n+1} |
\vec{\bf v}^{n+1} & = & \vec{\bf v}^{*} - \Delta t g \nabla \eta^{n+1} |
508 |
\label{eq:v-n+1-sync} |
\label{eq:v-n+1-sync} |
521 |
surface pressure gradient terms, corresponding to equations |
surface pressure gradient terms, corresponding to equations |
522 |
\ref{eq:Gv-n-sync} to \ref{eq:v-n+1-sync}. |
\ref{eq:Gv-n-sync} to \ref{eq:v-n+1-sync}. |
523 |
These operations are carried out in subroutines {\em DYNAMCIS}, {\em |
These operations are carried out in subroutines {\em DYNAMCIS}, {\em |
524 |
SOLVE\_FOR\_PRESSURE} and {\em THE\_CORRECTION\_STEP}. This, then, |
SOLVE\_FOR\_PRESSURE} and {\em MOMENTUM\_CORRECTION\_STEP}. This, then, |
525 |
represents an entire algorithm for stepping forward the model one |
represents an entire algorithm for stepping forward the model one |
526 |
time-step. The corresponding calling tree is given in |
time-step. The corresponding calling tree is given in |
527 |
\ref{fig:call-tree-adams-bashforth-sync}. |
\ref{fig:call-tree-adams-bashforth-sync}. |
528 |
|
|
529 |
\section{Staggered baroclinic time-stepping} |
\section{Staggered baroclinic time-stepping} |
530 |
\label{sect:adams-bashforth-staggered} |
\label{sect:adams-bashforth-staggered} |
531 |
|
\begin{rawhtml} |
532 |
|
<!-- CMIREDIR:adams_bashforth_staggered: --> |
533 |
|
\end{rawhtml} |
534 |
|
|
535 |
\begin{figure} |
\begin{figure} |
536 |
\begin{center} |
\begin{center} |
539 |
\caption{ |
\caption{ |
540 |
A schematic of the explicit Adams-Bashforth and implicit time-stepping |
A schematic of the explicit Adams-Bashforth and implicit time-stepping |
541 |
phases of the algorithm but with staggering in time of thermodynamic |
phases of the algorithm but with staggering in time of thermodynamic |
542 |
variables with the flow. Explicit thermodynamics tendencies are |
variables with the flow. |
543 |
evaluated at time level $n-1/2$ as a function of the thermodynamics |
Explicit momentum tendencies are evaluated at time level $n-1/2$ as a |
544 |
state at that time level $n$ and flow at time $n$ (dotted arrow). The |
function of the flow field at that time level $n-1/2$. |
545 |
explicit tendency from the previous time level, $n-3/2$, is used to |
The explicit tendency from the previous time level, $n-3/2$, is used to |
546 |
extrapolate tendencies to $n$ (dashed arrow). This extrapolated |
extrapolate tendencies to $n$ (dashed arrow). |
547 |
tendency allows thermo-dynamics variables to be stably integrated |
The hydrostatic pressure/geo-potential $\phi_{hyd}$ is evaluated directly |
548 |
forward-in-time to render an estimate ($*$-variables) at the $n+1/2$ |
at time level $n$ (vertical arrows) and used with the extrapolated tendencies |
549 |
time level (solid arc-arrow). The implicit-in-time operator ${\cal |
to step forward the flow variables from $n-1/2$ to $n+1/2$ (solid arc-arrow). |
550 |
L_{\theta,S}}$ is solved to yield the thermodynamic variables at time |
The implicit-in-time operator ${\cal L_{u,v}}$ (vertical arrows) is |
551 |
level $n+1/2$. These are then used to calculate the hydrostatic |
then applied to the previous estimation of the the flow field ($*$-variables) |
552 |
pressure/geo-potential, $\phi_{hyd}$ (vertical arrows). The |
and yields to the two velocity components $u,v$ at time level $n+1/2$. |
553 |
hydrostatic pressure gradient is evaluated directly an time level |
These are then used to calculate the advection term (dashed arc-arrow) |
554 |
$n+1/2$ in stepping forward the flow variables from $n$ to $n+1$ |
of the thermo-dynamics tendencies at time step $n$. |
555 |
(solid arc-arrow). } |
The extrapolated thermodynamics tendency, from time level $n-1$ and $n$ |
556 |
|
to $n+1/2$, allows thermodynamic variables to be stably integrated |
557 |
|
forward-in-time (solid arc-arrow) up to time level $n+1$. |
558 |
|
} |
559 |
\label{fig:adams-bashforth-staggered} |
\label{fig:adams-bashforth-staggered} |
560 |
\end{figure} |
\end{figure} |
561 |
|
|
565 |
thermodynamic variables with the flow |
thermodynamic variables with the flow |
566 |
variables. Fig.~\ref{fig:adams-bashforth-staggered} illustrates the |
variables. Fig.~\ref{fig:adams-bashforth-staggered} illustrates the |
567 |
staggering and algorithm. The key difference between this and |
staggering and algorithm. The key difference between this and |
568 |
Fig.~\ref{fig:adams-bashforth-sync} is that the new thermodynamics |
Fig.~\ref{fig:adams-bashforth-sync} is that the thermodynamic variables |
569 |
fields are used to compute the hydrostatic pressure at time level |
are solved after the dynamics, using the recently updated flow field. |
570 |
$n+1/2$. The essentially allows the gravity wave terms to leap-frog in |
This essentially allows the gravity wave terms to leap-frog in |
571 |
time giving second order accuracy and more stability. |
time giving second order accuracy and more stability. |
572 |
|
|
573 |
The essential change in the staggered algorithm is the calculation of |
The essential change in the staggered algorithm is that the |
574 |
hydrostatic pressure which, in the context of the synchronous |
thermodynamics solver is delayed from half a time step, |
575 |
algorithm involves replacing equation \ref{eq:phi-hyd-sync} with |
allowing the use of the most recent velocities to compute |
576 |
\begin{displaymath} |
the advection terms. Once the thermodynamics fields are |
577 |
\phi_{hyd}^n = \int b(\theta^{n+1},S^{n+1}) dr |
updated, the hydrostatic pressure is computed |
578 |
\end{displaymath} |
to step frowrad the dynamics |
579 |
but the pressure gradient must also be taken out of the |
Note that the pressure gradient must also be taken out of the |
580 |
Adams-Bashforth extrapolation. Also, retaining the integer time-levels, |
Adams-Bashforth extrapolation. Also, retaining the integer time-levels, |
581 |
$n$ and $n+1$, does not give a user the sense of where variables are |
$n$ and $n+1$, does not give a user the sense of where variables are |
582 |
located in time. Instead, we re-write the entire algorithm, |
located in time. Instead, we re-write the entire algorithm, |
583 |
\ref{eq:Gt-n-sync} to \ref{eq:v-n+1-sync}, annotating the |
\ref{eq:Gt-n-sync} to \ref{eq:v-n+1-sync}, annotating the |
584 |
position in time of variables appropriately: |
position in time of variables appropriately: |
585 |
\begin{eqnarray} |
\begin{eqnarray} |
586 |
G_{\theta,S}^{n-1/2} & = & G_{\theta,S} ( u^n, \theta^{n-1/2}, S^{n-1/2} ) |
\vec{\bf G}_{\vec{\bf v}}^{n-1/2} & = & \vec{\bf G}_{\vec{\bf v}} ( \vec{\bf v}^{n-1/2} ) |
|
\label{eq:Gt-n-staggered} \\ |
|
|
G_{\theta,S}^{(n)} & = & (3/2+\epsilon_{AB}) G_{\theta,S}^{n-1/2}-(1/2+\epsilon_{AB}) G_{\theta,S}^{n-3/2} |
|
|
\label{eq:Gt-n+5-staggered} \\ |
|
|
(\theta^*,S^*) & = & (\theta^{n},S^{n}) + \Delta t G_{\theta,S}^{(n)} |
|
|
\label{eq:tstar-staggered} \\ |
|
|
(\theta^{n+1/2},S^{n+1/2}) & = & {\cal L}^{-1}_{\theta,S} (\theta^*,S^*) |
|
|
\label{eq:t-n+1-staggered} \\ |
|
|
\phi^{n+1/2}_{hyd} & = & \int b(\theta^{n+1/2},S^{n+1/2}) dr |
|
|
\label{eq:phi-hyd-staggered} \\ |
|
|
\vec{\bf G}_{\vec{\bf v}}^{n} & = & \vec{\bf G}_{\vec{\bf v}} ( \vec{\bf v}^n ) |
|
587 |
\label{eq:Gv-n-staggered} \\ |
\label{eq:Gv-n-staggered} \\ |
588 |
\vec{\bf G}_{\vec{\bf v}}^{(n+1/2)} & = & (3/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n} - (1/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n-1} |
\vec{\bf G}_{\vec{\bf v}}^{(n)} & = & (3/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n-1/2} - (1/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n-3/2} |
589 |
\label{eq:Gv-n+5-staggered} \\ |
\label{eq:Gv-n+5-staggered} \\ |
590 |
\vec{\bf v}^{*} & = & \vec{\bf v}^{n} + \Delta t \left( \vec{\bf G}_{\vec{\bf v}}^{(n+1/2)} - \nabla \phi_{hyd}^{n+1/2} \right) |
\phi^{n}_{hyd} & = & \int b(\theta^{n},S^{n}) dr |
591 |
|
\label{eq:phi-hyd-staggered} \\ |
592 |
|
\vec{\bf v}^{*} & = & \vec{\bf v}^{n-1/2} + \Delta t \left( \vec{\bf G}_{\vec{\bf v}}^{(n)} - \nabla \phi_{hyd}^{n} \right) |
593 |
\label{eq:vstar-staggered} \\ |
\label{eq:vstar-staggered} \\ |
594 |
\vec{\bf v}^{**} & = & {\cal L}_{\vec{\bf v}}^{-1} ( \vec{\bf v}^* ) |
\vec{\bf v}^{**} & = & {\cal L}_{\vec{\bf v}}^{-1} ( \vec{\bf v}^* ) |
595 |
\label{eq:vstarstar-staggered} \\ |
\label{eq:vstarstar-staggered} \\ |
596 |
\eta^* & = & \epsilon_{fs} \left( \eta^{n} +P-E+R \right)- \Delta t |
\eta^* & = & \epsilon_{fs} \left( \eta^{n-1/2} + \Delta t (P-E)^n \right)- \Delta t |
597 |
\nabla \cdot H \widehat{ \vec{\bf v}^{**} } |
\nabla \cdot H \widehat{ \vec{\bf v}^{**} } |
598 |
\label{eq:nstar-staggered} \\ |
\label{eq:nstar-staggered} \\ |
599 |
\nabla \cdot g H \nabla \eta^{n+1} - \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2} |
\nabla \cdot g H \nabla \eta^{n+1/2} & - & \frac{\epsilon_{fs} \eta^{n+1/2}}{\Delta t^2} |
600 |
& = & - \frac{\eta^*}{\Delta t^2} |
~ = ~ - \frac{\eta^*}{\Delta t^2} |
601 |
\label{eq:elliptic-staggered} \\ |
\label{eq:elliptic-staggered} \\ |
602 |
\vec{\bf v}^{n+1} & = & \vec{\bf v}^{*} - \Delta t g \nabla \eta^{n+1} |
\vec{\bf v}^{n+1/2} & = & \vec{\bf v}^{*} - \Delta t g \nabla \eta^{n+1/2} |
603 |
\label{eq:v-n+1-staggered} |
\label{eq:v-n+1-staggered} \\ |
604 |
|
G_{\theta,S}^{n} & = & G_{\theta,S} ( u^{n+1/2}, \theta^{n}, S^{n} ) |
605 |
|
\label{eq:Gt-n-staggered} \\ |
606 |
|
G_{\theta,S}^{(n+1/2)} & = & (3/2+\epsilon_{AB}) G_{\theta,S}^{n}-(1/2+\epsilon_{AB}) G_{\theta,S}^{n-1} |
607 |
|
\label{eq:Gt-n+5-staggered} \\ |
608 |
|
(\theta^*,S^*) & = & (\theta^{n},S^{n}) + \Delta t G_{\theta,S}^{(n+1/2)} |
609 |
|
\label{eq:tstar-staggered} \\ |
610 |
|
(\theta^{n+1},S^{n+1}) & = & {\cal L}^{-1}_{\theta,S} (\theta^*,S^*) |
611 |
|
\label{eq:t-n+1-staggered} \\ |
612 |
\end{eqnarray} |
\end{eqnarray} |
613 |
The calling sequence is unchanged from |
The corresponding calling tree is given in |
614 |
Fig.~\ref{fig:call-tree-adams-bashforth-sync}. The staggered algorithm |
\ref{fig:call-tree-adams-bashforth-staggered}. |
615 |
is activated with the run-time flag {\bf staggerTimeStep=.TRUE.} in |
The staggered algorithm is activated with the run-time flag |
616 |
{\em PARM01} of {\em data}. |
{\bf staggerTimeStep=.TRUE.} in parameter file {\em data}, |
617 |
|
namelist {\em PARM01}. |
618 |
|
|
619 |
|
\begin{figure} |
620 |
|
\begin{center} \fbox{ \begin{minipage}{4.7in} \begin{tabbing} |
621 |
|
aaa \= aaa \= aaa \= aaa \= aaa \= aaa \kill |
622 |
|
FORWARD\_STEP \\ |
623 |
|
\>\> EXTERNAL\_FIELDS\_LOAD\\ |
624 |
|
\>\> DO\_ATMOSPHERIC\_PHYS \\ |
625 |
|
\>\> DO\_OCEANIC\_PHYS \\ |
626 |
|
\> DYNAMICS \\ |
627 |
|
\>\> CALC\_PHI\_HYD \` $\phi_{hyd}^n$ (\ref{eq:phi-hyd-staggered}) \\ |
628 |
|
\>\> MOM\_FLUXFORM or MOM\_VECINV \` $G_{\vec{\bf v}}^{n-1/2}$ |
629 |
|
(\ref{eq:Gv-n-staggered})\\ |
630 |
|
\>\> TIMESTEP \` $\vec{\bf v}^*$ (\ref{eq:Gv-n+5-staggered}, |
631 |
|
\ref{eq:vstar-staggered}) \\ |
632 |
|
\>\> IMPLDIFF \` $\vec{\bf v}^{**}$ (\ref{eq:vstarstar-staggered}) \\ |
633 |
|
\> UPDATE\_R\_STAR or UPDATE\_SURF\_DR \` (NonLin-FS only)\\ |
634 |
|
\> SOLVE\_FOR\_PRESSURE \\ |
635 |
|
\>\> CALC\_DIV\_GHAT \` $\eta^*$ (\ref{eq:nstar-staggered}) \\ |
636 |
|
\>\> CG2D \` $\eta^{n+1/2}$ (\ref{eq:elliptic-staggered}) \\ |
637 |
|
\> MOMENTUM\_CORRECTION\_STEP \\ |
638 |
|
\>\> CALC\_GRAD\_PHI\_SURF \` $\nabla \eta^{n+1/2}$ \\ |
639 |
|
\>\> CORRECTION\_STEP \` $u^{n+1/2}$,$v^{n+1/2}$ (\ref{eq:v-n+1-staggered})\\ |
640 |
|
\> THERMODYNAMICS \\ |
641 |
|
\>\> CALC\_GT \\ |
642 |
|
\>\>\> GAD\_CALC\_RHS \` $G_\theta^n = G_\theta( u, \theta^n )$ |
643 |
|
(\ref{eq:Gt-n-staggered})\\ |
644 |
|
\>\>\> EXTERNAL\_FORCING \` $G_\theta^n = G_\theta^n + {\cal Q}$ \\ |
645 |
|
\>\>\> ADAMS\_BASHFORTH2 \` $G_\theta^{(n+1/2)}$ (\ref{eq:Gt-n+5-staggered}) \\ |
646 |
|
\>\> TIMESTEP\_TRACER \` $\tau^*$ (\ref{eq:tstar-staggered}) \\ |
647 |
|
\>\> IMPLDIFF \` $\tau^{(n+1)}$ (\ref{eq:t-n+1-staggered}) \\ |
648 |
|
\> TRACERS\_CORRECTION\_STEP \\ |
649 |
|
\>\> CYCLE\_TRACER \` $\theta^{n+1}$ \\ |
650 |
|
\>\> FILTER \` Shapiro Filter, Zonal Filter (FFT) \\ |
651 |
|
\>\> CONVECTIVE\_ADJUSTMENT \` \\ |
652 |
|
\end{tabbing} \end{minipage} } \end{center} |
653 |
|
\caption{ |
654 |
|
Calling tree for the overall staggered algorithm using |
655 |
|
Adams-Bashforth time-stepping. |
656 |
|
The place where the model geometry |
657 |
|
({\em hFac} factors) is updated is added here but is only relevant |
658 |
|
for the non-linear free-surface algorithm. |
659 |
|
} |
660 |
|
\label{fig:call-tree-adams-bashforth-staggered} |
661 |
|
\end{figure} |
662 |
|
|
663 |
The only difficulty with this approach is apparent in equation |
The only difficulty with this approach is apparent in equation |
664 |
\ref{eq:Gt-n-staggered} and illustrated by the dotted arrow |
\ref{eq:Gt-n-staggered} and illustrated by the dotted arrow |
665 |
connecting $u,v^n$ with $G_\theta^{n-1/2}$. The flow used to advect |
connecting $u,v^{n+1/2}$ with $G_\theta^{n}$. The flow used to advect |
666 |
tracers around is not naturally located in time. This could be avoided |
tracers around is not naturally located in time. This could be avoided |
667 |
by applying the Adams-Bashforth extrapolation to the tracer field |
by applying the Adams-Bashforth extrapolation to the tracer field |
668 |
itself and advecting that around but this approach is not yet |
itself and advecting that around but this approach is not yet |
673 |
|
|
674 |
\section{Non-hydrostatic formulation} |
\section{Non-hydrostatic formulation} |
675 |
\label{sect:non-hydrostatic} |
\label{sect:non-hydrostatic} |
676 |
|
\begin{rawhtml} |
677 |
|
<!-- CMIREDIR:non-hydrostatic_formulation: --> |
678 |
|
\end{rawhtml} |
679 |
|
|
680 |
The non-hydrostatic formulation re-introduces the full vertical |
The non-hydrostatic formulation re-introduces the full vertical |
681 |
momentum equation and requires the solution of a 3-D elliptic |
momentum equation and requires the solution of a 3-D elliptic |
748 |
u^{*} & = & u^{n} + \Delta t G_u^{(n+1/2)} \label{eq:ustar-nh} \\ |
u^{*} & = & u^{n} + \Delta t G_u^{(n+1/2)} \label{eq:ustar-nh} \\ |
749 |
v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-nh} \\ |
v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-nh} \\ |
750 |
w^{*} & = & w^{n} + \Delta t G_w^{(n+1/2)} \label{eq:wstar-nh} \\ |
w^{*} & = & w^{n} + \Delta t G_w^{(n+1/2)} \label{eq:wstar-nh} \\ |
751 |
\eta^* & = & \epsilon_{fs} \left( \eta^{n} +P-E+R \right)- \Delta t |
\eta^* ~ = ~ \epsilon_{fs} \left( \eta^{n} + \Delta t (P-E) \right) |
752 |
|
& - & \Delta t |
753 |
\partial_x H \widehat{u^{*}} |
\partial_x H \widehat{u^{*}} |
754 |
+ \partial_y H \widehat{v^{*}} |
+ \partial_y H \widehat{v^{*}} |
755 |
\\ |
\\ |
756 |
\partial_x g H \partial_x \eta^{n+1} |
\partial_x g H \partial_x \eta^{n+1} |
757 |
+ \partial_y g H \partial_y \eta^{n+1} |
+ \partial_y g H \partial_y \eta^{n+1} |
758 |
- \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2} |
& - & \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2} |
759 |
& = & |
~ = ~ |
760 |
- \frac{\eta^*}{\Delta t^2} |
- \frac{\eta^*}{\Delta t^2} |
761 |
\label{eq:elliptic-nh} |
\label{eq:elliptic-nh} |
762 |
\\ |
\\ |