/[MITgcm]/manual/s_algorithm/text/time_stepping.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/time_stepping.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.5 by jmc, Mon Sep 24 19:30:40 2001 UTC revision 1.16 by edhill, Thu Aug 7 18:27:52 2003 UTC
# Line 1  Line 1 
1  % $Header$  % $Header$
2  % $Name$  % $Name$
3    
4  The convention used in this section is as follows:  This chapter lays out the numerical schemes that are
5  Time is "discretize" using a time step $\Delta t$    employed in the core MITgcm algorithm. Whenever possible
6  and $\Phi^n$ refers to the variable $\Phi$  links are made to actual program code in the MITgcm implementation.
7  at time $t = n \Delta t$ . We used the notation $\Phi^{(n)}$  The chapter begins with a discussion of the temporal discretization
8  when time interpolation is required to estimate the value of $\phi$  used in MITgcm. This discussion is followed by sections that
9  at the time $n \Delta t$.  describe the spatial discretization. The schemes employed for momentum
10    terms are described first, afterwards the schemes that apply to
11  \section{Time integration}  passive and dynamically active tracers are described.
12    
13  The discretization in time of the model equations (cf section I )  
14  does not depend of the discretization in space of each  \section{Time-stepping}
15  term, so that this section can be read independently.  The equations of motion integrated by the model involve four
16  Also for this purpose, we will refers to the continuous  prognostic equations for flow, $u$ and $v$, temperature, $\theta$, and
17  space-derivative form of model equations, and focus on  salt/moisture, $S$, and three diagnostic equations for vertical flow,
18  the time discretization.  $w$, density/buoyancy, $\rho$/$b$, and pressure/geo-potential,
19    $\phi_{hyd}$. In addition, the surface pressure or height may by
20  The continuous form of the model equations is:  described by either a prognostic or diagnostic equation and if
21    non-hydrostatics terms are included then a diagnostic equation for
22  \begin{eqnarray}  non-hydrostatic pressure is also solved. The combination of prognostic
23  \partial_t \theta & = & G_\theta  and diagnostic equations requires a model algorithm that can march
24  \label{eq-tCsC-theta}  forward prognostic variables while satisfying constraints imposed by
25  \\  diagnostic equations.
26  \partial_t S & = & G_s  
27  \label{eq-tCsC-salt}  Since the model comes in several flavors and formulation, it would be
28  \\  confusing to present the model algorithm exactly as written into code
29  b' & = & b'(\theta,S,r)  along with all the switches and optional terms. Instead, we present
30  \\  the algorithm for each of the basic formulations which are:
31  \partial_r \phi'_{hyd} & = & -b'  \begin{enumerate}
32  \label{eq-tCsC-hyd}  \item the semi-implicit pressure method for hydrostatic equations
33  \\  with a rigid-lid, variables co-located in time and with
34  \partial_t \vec{\bf v}  Adams-Bashforth time-stepping, \label{it:a}
35  + {\bf \nabla}_h b_s \eta  \item as \ref{it:a}. but with an implicit linear free-surface, \label{it:b}
36  + \epsilon_{nh} {\bf \nabla}_h \phi'_{nh}  \item as \ref{it:a}. or \ref{it:b}. but with variables staggered in time,
37  & = & \vec{\bf G}_{\vec{\bf v}}  \label{it:c}
38  - {\bf \nabla}_h \phi'_{hyd}  \item as \ref{it:a}. or \ref{it:b}. but with non-hydrostatic terms included,
39  \label{eq-tCsC-Hmom}  \item as \ref{it:b}. or \ref{it:c}. but with non-linear free-surface.
40  \\  \end{enumerate}
41  \epsilon_{nh} \frac {\partial{\dot{r}}}{\partial{t}}  
42  + \epsilon_{nh} \partial_r \phi'_{nh}  In all the above configurations it is also possible to substitute the
43  & = & \epsilon_{nh} G_{\dot{r}}  Adams-Bashforth with an alternative time-stepping scheme for terms
44  \label{eq-tCsC-Vmom}  evaluated explicitly in time. Since the over-arching algorithm is
45  \\  independent of the particular time-stepping scheme chosen we will
46  {\bf \nabla}_h \cdot \vec{\bf v} + \partial_r \dot{r}  describe first the over-arching algorithm, known as the pressure
47  & = & 0  method, with a rigid-lid model in section
48  \label{eq-tCsC-cont}  \ref{sect:pressure-method-rigid-lid}. This algorithm is essentially
49    unchanged, apart for some coefficients, when the rigid lid assumption
50    is replaced with a linearized implicit free-surface, described in
51    section \ref{sect:pressure-method-linear-backward}. These two flavors
52    of the pressure-method encompass all formulations of the model as it
53    exists today. The integration of explicit in time terms is out-lined
54    in section \ref{sect:adams-bashforth} and put into the context of the
55    overall algorithm in sections \ref{sect:adams-bashforth-sync} and
56    \ref{sect:adams-bashforth-staggered}. Inclusion of non-hydrostatic
57    terms requires applying the pressure method in three dimensions
58    instead of two and this algorithm modification is described in section
59    \ref{sect:non-hydrostatic}. Finally, the free-surface equation may be
60    treated more exactly, including non-linear terms, and this is
61    described in section \ref{sect:nonlinear-freesurface}.
62    
63    
64    \section{Pressure method with rigid-lid} \label{sect:pressure-method-rigid-lid}
65    
66    \begin{figure}
67    \begin{center}
68    \resizebox{4.0in}{!}{\includegraphics{part2/pressure-method-rigid-lid.eps}}
69    \end{center}
70    \caption{
71    A schematic of the evolution in time of the pressure method
72    algorithm. A prediction for the flow variables at time level $n+1$ is
73    made based only on the explicit terms, $G^{(n+^1/_2)}$, and denoted
74    $u^*$, $v^*$. Next, a pressure field is found such that $u^{n+1}$,
75    $v^{n+1}$ will be non-divergent. Conceptually, the $*$ quantities
76    exist at time level $n+1$ but they are intermediate and only
77    temporary.}
78    \label{fig:pressure-method-rigid-lid}
79    \end{figure}
80    
81    \begin{figure}
82    \begin{center} \fbox{ \begin{minipage}{4.5in} \begin{tabbing}
83    aaa \= aaa \= aaa \= aaa \= aaa \= aaa \kill
84    \filelink{FORWARD\_STEP}{model-src-forward_step.F} \\
85    \> DYNAMICS \\
86    \>\> TIMESTEP \` $u^*$,$v^*$ (\ref{eq:ustar-rigid-lid},\ref{eq:vstar-rigid-lid}) \\
87    \> SOLVE\_FOR\_PRESSURE \\
88    \>\> CALC\_DIV\_GHAT \` $H\widehat{u^*}$,$H\widehat{v^*}$ (\ref{eq:elliptic}) \\
89    \>\> CG2D \` $\eta^{n+1}$ (\ref{eq:elliptic}) \\
90    \> THE\_CORRECTION\_STEP  \\
91    \>\> CALC\_GRAD\_PHI\_SURF \` $\nabla \eta^{n+1}$ \\
92    \>\> CORRECTION\_STEP \` $u^{n+1}$,$v^{n+1}$ (\ref{eq:un+1-rigid-lid},\ref{eq:vn+1-rigid-lid})
93    \end{tabbing} \end{minipage} } \end{center}
94    \caption{Calling tree for the pressure method algorithm
95      (\filelink{FORWARD\_STEP}{model-src-forward_step.F})}
96    \label{fig:call-tree-pressure-method}
97    \end{figure}
98    
99    The horizontal momentum and continuity equations for the ocean
100    (\ref{eq:ocean-mom} and \ref{eq:ocean-cont}), or for the atmosphere
101    (\ref{eq:atmos-mom} and \ref{eq:atmos-cont}), can be summarized by:
102    \begin{eqnarray}
103    \partial_t u + g \partial_x \eta & = & G_u \\
104    \partial_t v + g \partial_y \eta & = & G_v \\
105    \partial_x u + \partial_y v + \partial_z w & = & 0
106  \end{eqnarray}  \end{eqnarray}
107  where  where we are adopting the oceanic notation for brevity. All terms in
108  \begin{eqnarray*}  the momentum equations, except for surface pressure gradient, are
109  G_\theta & = &  encapsulated in the $G$ vector. The continuity equation, when
110  - \vec{\bf v} \cdot {\bf \nabla} \theta + {\cal Q}_\theta  integrated over the fluid depth, $H$, and with the rigid-lid/no normal
111  \\  flow boundary conditions applied, becomes:
112  G_S & = &  \begin{equation}
113  - \vec{\bf v} \cdot {\bf \nabla} S + {\cal Q}_S  \partial_x H \widehat{u} + \partial_y H \widehat{v} = 0
114  \\  \label{eq:rigid-lid-continuity}
115  \vec{\bf G}_{\vec{\bf v}}  \end{equation}
116    Here, $H\widehat{u} = \int_H u dz$ is the depth integral of $u$,
117    similarly for $H\widehat{v}$. The rigid-lid approximation sets $w=0$
118    at the lid so that it does not move but allows a pressure to be
119    exerted on the fluid by the lid. The horizontal momentum equations and
120    vertically integrated continuity equation are be discretized in time
121    and space as follows:
122    \begin{eqnarray}
123    u^{n+1} + \Delta t g \partial_x \eta^{n+1}
124    & = & u^{n} + \Delta t G_u^{(n+1/2)}
125    \label{eq:discrete-time-u}
126    \\
127    v^{n+1} + \Delta t g \partial_y \eta^{n+1}
128    & = & v^{n} + \Delta t G_v^{(n+1/2)}
129    \label{eq:discrete-time-v}
130    \\
131      \partial_x H \widehat{u^{n+1}}
132    + \partial_y H \widehat{v^{n+1}} & = & 0
133    \label{eq:discrete-time-cont-rigid-lid}
134    \end{eqnarray}
135    As written here, terms on the LHS all involve time level $n+1$ and are
136    referred to as implicit; the implicit backward time stepping scheme is
137    being used. All other terms in the RHS are explicit in time. The
138    thermodynamic quantities are integrated forward in time in parallel
139    with the flow and will be discussed later. For the purposes of
140    describing the pressure method it suffices to say that the hydrostatic
141    pressure gradient is explicit and so can be included in the vector
142    $G$.
143    
144    Substituting the two momentum equations into the depth integrated
145    continuity equation eliminates $u^{n+1}$ and $v^{n+1}$ yielding an
146    elliptic equation for $\eta^{n+1}$. Equations
147    \ref{eq:discrete-time-u}, \ref{eq:discrete-time-v} and
148    \ref{eq:discrete-time-cont-rigid-lid} can then be re-arranged as follows:
149    \begin{eqnarray}
150    u^{*} & = & u^{n} + \Delta t G_u^{(n+1/2)} \label{eq:ustar-rigid-lid} \\
151    v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-rigid-lid} \\
152      \partial_x \Delta t g H \partial_x \eta^{n+1}
153    + \partial_y \Delta t g H \partial_y \eta^{n+1}
154  & = &  & = &
155  - \vec{\bf v} \cdot {\bf \nabla} \vec{\bf v}    \partial_x H \widehat{u^{*}}
156  - f \hat{\bf k} \wedge \vec{\bf v}  + \partial_y H \widehat{v^{*}} \label{eq:elliptic}
 + \vec{\cal F}_{\vec{\bf v}}  
157  \\  \\
158  G_{\dot{r}}  u^{n+1} & = & u^{*} - \Delta t g \partial_x \eta^{n+1} \label{eq:un+1-rigid-lid}\\
159  & = &  v^{n+1} & = & v^{*} - \Delta t g \partial_y \eta^{n+1} \label{eq:vn+1-rigid-lid}
160  - \vec{\bf v} \cdot {\bf \nabla} \dot{r}  \end{eqnarray}
161  + {\cal F}_{\dot{r}}  Equations \ref{eq:ustar-rigid-lid} to \ref{eq:vn+1-rigid-lid}, solved
162  \end{eqnarray*}  sequentially, represent the pressure method algorithm used in the
163  The exact form of all the "{\it G}"s terms is described in the next  model. The essence of the pressure method lies in the fact that any
164  section (). Here its sufficient to mention that they contains  explicit prediction for the flow would lead to a divergence flow field
165  all the RHS terms except the pressure / geo- potential terms.  so a pressure field must be found that keeps the flow non-divergent
166    over each step of the integration. The particular location in time of
167  The switch $\epsilon_{nh}$ allows to activate the non hydrostatic  the pressure field is somewhat ambiguous; in
168  mode ($\epsilon_{nh}=1$) for the ocean model. Otherwise,  Fig.~\ref{fig:pressure-method-rigid-lid} we depicted as co-located
169  in the hydrostatic limit $\epsilon_{nh} = 0$  with the future flow field (time level $n+1$) but it could equally
170  and equation \ref{eq-tCsC-Vmom} vanishes.  have been drawn as staggered in time with the flow.
171    
172  The equation for $\eta$ is obtained by integrating the  The correspondence to the code is as follows:
173  continuity equation over the entire depth of the fluid,  \begin{itemize}
174  from $R_{fixed}(x,y)$ up to $R_o(x,y)$  \item
175  (Linear free surface):  the prognostic phase, equations \ref{eq:ustar-rigid-lid} and \ref{eq:vstar-rigid-lid},
176  \begin{eqnarray}  stepping forward $u^n$ and $v^n$ to $u^{*}$ and $v^{*}$ is coded in
177  \epsilon_{fs} \partial_t \eta =  \filelink{TIMESTEP()}{model-src-timestep.F}
178  \left. \dot{r} \right|_{r=r_{surf}} + \epsilon_{fw} (P-E) =  \item
179  - {\bf \nabla} \cdot \int_{R_{fixed}}^{R_o} \vec{\bf v} dr  the vertical integration, $H \widehat{u^*}$ and $H
180  + \epsilon_{fw} (P-E)  \widehat{v^*}$, divergence and inversion of the elliptic operator in
181  \label{eq-tCsC-eta}  equation \ref{eq:elliptic} is coded in
182  \end{eqnarray}  \filelink{SOLVE\_FOR\_PRESSURE()}{model-src-solve_for_pressure.F}
183    \item
184  Where $\epsilon_{fs}$,$\epsilon_{fw}$ are two flags to  finally, the new flow field at time level $n+1$ given by equations
185  distinguish between a free-surface equation ($\epsilon_{fs}=1$)  \ref{eq:un+1-rigid-lid} and \ref{eq:vn+1-rigid-lid} is calculated in
186  or the rigid-lid approximation ($\epsilon_{fs}=0$);    \filelink{CORRECTION\_STEP()}{model-src-correction_step.F}.
187  and to distinguish when exchange of Fresh-Water is included  \end{itemize}
188  at the ocean surface (natural BC) ($\epsilon_{fw} = 1$)  The calling tree for these routines is given in
189  or not ($\epsilon_{fw} = 0$).  Fig.~\ref{fig:call-tree-pressure-method}.
   
 The hydrostatic potential is found by  
 integrating \ref{eq-tCsC-hyd} with the boundary condition that  
 $\phi'_{hyd}(r=R_o) = 0$:  
 \begin{eqnarray*}  
 & &  
 \int_{r'}^{R_o} \partial_r \phi'_{hyd} dr =  
 \left[ \phi'_{hyd} \right]_{r'}^{R_o} =  
 \int_{r'}^{R_o} - b' dr  
 \\  
 \Rightarrow & &  
 \phi'_{hyd}(x,y,r') = \int_{r'}^{R_o} b' dr  
 \end{eqnarray*}  
190    
191  \subsection{General method}  
192    
193  An overview of the general method is presented hereafter,  \paragraph{Need to discuss implicit viscosity somewhere:}
194  with explicit references to the Fortran code. This part  \begin{eqnarray}
195  often refers to the discretized equations of the model  \frac{1}{\Delta t} u^{n+1} - \partial_z A_v \partial_z u^{n+1}
196  that are detailed in the following sections.  + g \partial_x \eta^{n+1} & = & \frac{1}{\Delta t} u^{n} +
197    G_u^{(n+1/2)}
 The general algorithm consist in  a "predictor step" that computes  
 the forward tendencies ("G" terms") and all  
 the "first guess" values (star notation):  
 $\theta^*, S^*, \vec{\bf v}^*$ (and $\dot{r}^*$  
 in non-hydrostatic mode). This is done in the two routines  
 {\it THERMODYNAMICS} and {\it DYNAMICS}.  
   
 Then the implicit terms that appear on the left hand side (LHS)  
 of equations \ref{eq-tDsC-theta} - \ref{eq-tDsC-cont},  
 are solved as follows:  
 Since implicit vertical diffusion and viscosity terms  
 are independent from the barotropic flow adjustment,  
 they are computed first, solving a 3 diagonal Nr x Nr linear system,  
 and incorporated at the end of the {\it THERMODYNAMICS} and  
 {\it DYNAMICS} routines.  
 Then the surface pressure and non hydrostatic pressure  
 are evaluated ({\it SOLVE\_FOR\_PRESSURE});  
   
 Finally, within a "corrector step',  
 (routine {\it THE\_CORRECTION\_STEP})  
 the new values of $u,v,w,\theta,S$  
 are derived according to the above equations  
 (see details in II.1.3).  
   
 At this point, the regular time step is over, but    
 the correction step contains also other optional  
 adjustments such as convective adjustment algorithm, or filters  
 (zonal FFT filter, shapiro filter)  
 that applied on both momentum and tracer fields.  
 just before setting the $n+1$ new time step value.  
   
 Since the pressure solver precision is of the order of  
 the "target residual" that could be lower than the  
 the computer truncation error, and also because some filters  
 might alter the divergence part of the flow field,  
 a final evaluation of the surface r anomaly $\eta^{n+1}$  
 is performed, according to \ref{eq-tDsC-eta} ({\it CALC\_EXACT\_ETA}).  
 This ensures a perfect volume conservation.  
 Note that there is no need for an equivalent Non-hydrostatic  
 "exact conservation" step, since W is already computed after  
 the filters applied.  
   
 Regarding optional forcing terms (usually part of a "package"),  
 that account for a specific source or sink term (e.g.: condensation  
 as a sink of water vapor Q), they are generally incorporated  
 in the main algorithm as follows;  
 At the the beginning of the time step,  
 the additional tendencies are computed  
 as function of the present state (time step $n$) and external forcing ;  
 Then within the main part of model,  
 only those new tendencies are added to the model variables.  
   
 [more details needed]\\  
   
 The atmospheric physics follows this general scheme.  
   
 [more about C\_grid, A\_grid conversion \& drag term]\\  
   
 \subsection{Standard synchronous time stepping}  
   
 In the standard formulation, the surface pressure is  
 evaluated at time step n+1 (implicit method).  
 The above set of equations is then discretized in time  
 as follows:  
 \begin{eqnarray}  
 \left[ 1 - \partial_r \kappa_v^\theta \partial_r \right]  
 \theta^{n+1} & = & \theta^*  
 \label{eq-tDsC-theta}  
 \\  
 \left[ 1 - \partial_r \kappa_v^S \partial_r \right]  
 S^{n+1} & = & S^*  
 \label{eq-tDsC-salt}  
 \\  
 %{b'}^{n} & = & b'(\theta^{n},S^{n},r)  
 %\partial_r {\phi'_{hyd}}^{n} & = & {-b'}^{n}  
 %\\  
 {\phi'_{hyd}}^{n} & = & \int_{r'}^{R_o} b'(\theta^{n},S^{n},r) dr  
 \label{eq-tDsC-hyd}  
 \\  
 \vec{\bf v} ^{n+1}  
 + \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}  
 + \epsilon_{nh} \Delta t {\bf \nabla} {\phi'_{nh}}^{n+1}  
 - \partial_r A_v \partial_r \vec{\bf v}^{n+1}  
 & = &  
 \vec{\bf v}^*  
 \label{eq-tDsC-Hmom}  
198  \\  \\
199  \epsilon_{fs} {\eta}^{n+1} + \Delta t  \frac{1}{\Delta t} v^{n+1} - \partial_z A_v \partial_z v^{n+1}
200  {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o} \vec{\bf v}^{n+1} dr  + g \partial_y \eta^{n+1} & = & \frac{1}{\Delta t} v^{n} + G_v^{(n+1/2)}
 & = &  
     \epsilon_{fs} {\eta}^{n} + \epsilon_{fw} \Delta_t (P-E)^{n}  
 \nonumber  
 \\  
 % = \epsilon_{fs} {\eta}^{n} & + & \epsilon_{fw} \Delta_t (P-E)^{n}  
 \label{eq-tDsC-eta}  
 \\  
 \epsilon_{nh} \left( \dot{r} ^{n+1}  
 + \Delta t \partial_r {\phi'_{nh}} ^{n+1}  
 \right)  
 & = & \epsilon_{nh} \dot{r}^*  
 \label{eq-tDsC-Vmom}  
 \\  
 {\bf \nabla}_h \cdot \vec{\bf v}^{n+1} + \partial_r \dot{r}^{n+1}  
 & = & 0  
 \label{eq-tDsC-cont}  
201  \end{eqnarray}  \end{eqnarray}
202  where  
203    
204    \section{Pressure method with implicit linear free-surface}
205    \label{sect:pressure-method-linear-backward}
206    
207    The rigid-lid approximation filters out external gravity waves
208    subsequently modifying the dispersion relation of barotropic Rossby
209    waves. The discrete form of the elliptic equation has some zero
210    eigen-values which makes it a potentially tricky or inefficient
211    problem to solve.
212    
213    The rigid-lid approximation can be easily replaced by a linearization
214    of the free-surface equation which can be written:
215    \begin{equation}
216    \partial_t \eta + \partial_x H \widehat{u} + \partial_y H \widehat{v} = P-E+R
217    \label{eq:linear-free-surface=P-E+R}
218    \end{equation}
219    which differs from the depth integrated continuity equation with
220    rigid-lid (\ref{eq:rigid-lid-continuity}) by the time-dependent term
221    and fresh-water source term.
222    
223    Equation \ref{eq:discrete-time-cont-rigid-lid} in the rigid-lid
224    pressure method is then replaced by the time discretization of
225    \ref{eq:linear-free-surface=P-E+R} which is:
226    \begin{equation}
227    \eta^{n+1}
228    + \Delta t \partial_x H \widehat{u^{n+1}}
229    + \Delta t \partial_y H \widehat{v^{n+1}}
230    =
231    \eta^{n}
232    + \Delta t ( P - E + R )
233    \label{eq:discrete-time-backward-free-surface}
234    \end{equation}
235    where the use of flow at time level $n+1$ makes the method implicit
236    and backward in time. The is the preferred scheme since it still
237    filters the fast unresolved wave motions by damping them. A centered
238    scheme, such as Crank-Nicholson, would alias the energy of the fast
239    modes onto slower modes of motion.
240    
241    As for the rigid-lid pressure method, equations
242    \ref{eq:discrete-time-u}, \ref{eq:discrete-time-v} and
243    \ref{eq:discrete-time-backward-free-surface} can be re-arranged as follows:
244  \begin{eqnarray}  \begin{eqnarray}
245  \theta^* & = &  u^{*} & = & u^{n} + \Delta t G_u^{(n+1/2)} \label{eq:ustar-backward-free-surface} \\
246  \theta ^{n} + \Delta t G_{\theta} ^{(n+1/2)}  v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-backward-free-surface} \\
247  \\  \eta^* & = & \epsilon_{fs} \left( \eta^{n} +P-E+R \right)- \Delta t
248  S^* & = &    \partial_x H \widehat{u^{*}}
249  S ^{n} + \Delta t G_{S} ^{(n+1/2)}  + \partial_y H \widehat{v^{*}}
250  \\  \\
251  \vec{\bf v}^* & = &    \partial_x g H \partial_x \eta^{n+1}
252  \vec{\bf v}^{n} + \Delta t \vec{\bf G}_{\vec{\bf v}} ^{(n+1/2)}  + \partial_y g H \partial_y \eta^{n+1}
253  + \Delta t  {\bf \nabla}_h {\phi'_{hyd}}^{(n+1/2)}  - \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2}
254    & = &
255    - \frac{\eta^*}{\Delta t^2}
256    \label{eq:elliptic-backward-free-surface}
257  \\  \\
258  \dot{r}^* & = &  u^{n+1} & = & u^{*} - \Delta t g \partial_x \eta^{n+1} \label{eq:un+1-backward-free-surface}\\
259  \dot{r} ^{n} + \Delta t G_{\dot{r}} ^{(n+1/2)}  v^{n+1} & = & v^{*} - \Delta t g \partial_y \eta^{n+1} \label{eq:vn+1-backward-free-surface}
260  \end{eqnarray}  \end{eqnarray}
261    Equations~\ref{eq:ustar-backward-free-surface}
262    to~\ref{eq:vn+1-backward-free-surface}, solved sequentially, represent
263    the pressure method algorithm with a backward implicit, linearized
264    free surface. The method is still formerly a pressure method because
265    in the limit of large $\Delta t$ the rigid-lid method is
266    recovered. However, the implicit treatment of the free-surface allows
267    the flow to be divergent and for the surface pressure/elevation to
268    respond on a finite time-scale (as opposed to instantly). To recover
269    the rigid-lid formulation, we introduced a switch-like parameter,
270    $\epsilon_{fs}$, which selects between the free-surface and rigid-lid;
271    $\epsilon_{fs}=1$ allows the free-surface to evolve; $\epsilon_{fs}=0$
272    imposes the rigid-lid. The evolution in time and location of variables
273    is exactly as it was for the rigid-lid model so that
274    Fig.~\ref{fig:pressure-method-rigid-lid} is still
275    applicable. Similarly, the calling sequence, given in
276    Fig.~\ref{fig:call-tree-pressure-method}, is as for the
277    pressure-method.
278    
279    
280    \section{Explicit time-stepping: Adams-Bashforth}
281    \label{sect:adams-bashforth}
282    
283    In describing the the pressure method above we deferred describing the
284    time discretization of the explicit terms. We have historically used
285    the quasi-second order Adams-Bashforth method for all explicit terms
286    in both the momentum and tracer equations. This is still the default
287    mode of operation but it is now possible to use alternate schemes for
288    tracers (see section \ref{sect:tracer-advection}).
289    
290    \begin{figure}
291    \begin{center} \fbox{ \begin{minipage}{4.5in} \begin{tabbing}
292    aaa \= aaa \= aaa \= aaa \= aaa \= aaa \kill
293    FORWARD\_STEP \\
294    \> THERMODYNAMICS \\
295    \>\> CALC\_GT \\
296    \>\>\> GAD\_CALC\_RHS \` $G_\theta^n = G_\theta( u, \theta^n )$ \\
297    \>\>\> EXTERNAL\_FORCING \` $G_\theta^n = G_\theta^n + {\cal Q}$ \\
298    \>\>\> ADAMS\_BASHFORTH2 \` $G_\theta^{(n+1/2)}$ (\ref{eq:adams-bashforth2}) \\
299    \>\> TIMESTEP\_TRACER \` $\tau^*$ (\ref{eq:taustar}) \\
300    \>\> IMPLDIFF \` $\tau^{(n+1)}$ (\ref{eq:tau-n+1-implicit})
301    \end{tabbing} \end{minipage} } \end{center}
302    \caption{
303    Calling tree for the Adams-Bashforth time-stepping of temperature with
304    implicit diffusion.}
305    \label{fig:call-tree-adams-bashforth}
306    \end{figure}
307    
308  Note that implicit vertical terms (viscosity and diffusivity) are  In the previous sections, we summarized an explicit scheme as:
309  not considered as part of the "{\it G}" terms, but are  \begin{equation}
310  written separately here.  \tau^{*} = \tau^{n} + \Delta t G_\tau^{(n+1/2)}
311    \label{eq:taustar}
312  To ensure a second order time discretization for both  \end{equation}
313  momentum and tracer,  where $\tau$ could be any prognostic variable ($u$, $v$, $\theta$ or
314  The "{\it G}" terms are "extrapolated" forward in time  $S$) and $\tau^*$ is an explicit estimate of $\tau^{n+1}$ and would be
315  (Adams Bashforth time stepping)  exact if not for implicit-in-time terms. The parenthesis about $n+1/2$
316  from the values computed at time step $n$ and $n-1$  indicates that the term is explicit and extrapolated forward in time
317  to the time $n+1/2$:  and for this we use the quasi-second order Adams-Bashforth method:
318  $$G^{(n+1/2)} = G^n + (1/2+\epsilon_{AB}) (G^n - G^{n-1})$$  \begin{equation}
319  A small number for the parameter $\epsilon_{AB}$ is generally used  G_\tau^{(n+1/2)} = ( 3/2 + \epsilon_{AB}) G_\tau^n
320  to stabilize this time stepping.  - ( 1/2 + \epsilon_{AB}) G_\tau^{n-1}
321    \label{eq:adams-bashforth2}
322  In the standard non-stagger formulation,  \end{equation}
323  the Adams-Bashforth time stepping is also applied to the  This is a linear extrapolation, forward in time, to
324  hydrostatic (pressure / geo-) potential term $\nabla_h \Phi'_{hyd}$.  $t=(n+1/2+{\epsilon_{AB}})\Delta t$. An extrapolation to the mid-point
325  Note that presently, this term is in fact incorporated to the  in time, $t=(n+1/2)\Delta t$, corresponding to $\epsilon_{AB}=0$,
326  $\vec{\bf G}_{\vec{\bf v}}$ arrays ({\bf gU,gV}).  would be second order accurate but is weakly unstable for oscillatory
327    terms. A small but finite value for $\epsilon_{AB}$ stabilizes the
328  \subsection{Stagger baroclinic time stepping}  method. Strictly speaking, damping terms such as diffusion and
329    dissipation, and fixed terms (forcing), do not need to be inside the
330  An alternative is to evaluate $\phi'_{hyd}$ with the  Adams-Bashforth extrapolation. However, in the current code, it is
331  new tracer fields, and step forward the momentum after.  simpler to include these terms and this can be justified if the flow
332  This option is known as stagger baroclinic time stepping,  and forcing evolves smoothly. Problems can, and do, arise when forcing
333  since tracer and momentum are step forward in time one after the other.  or motions are high frequency and this corresponds to a reduced
334  It can be activated turning on a running flag parameter  stability compared to a simple forward time-stepping of such terms.
335  {\bf staggerTimeStep} in file "{\it data}").  
336    A stability analysis for an oscillation equation should be given at this point.
337  The main advantage of this time stepping compared to a synchronous one,  \marginpar{AJA needs to find his notes on this...}
338  is a better stability, specially regarding internal gravity waves,  
339  and a very natural implementation of a 2nd order in time  A stability analysis for a relaxation equation should be given at this point.
340  hydrostatic pressure / geo- potential term.  \marginpar{...and for this too.}
341  In the other hand, a synchronous time step might be  better  
342  for convection problems; Its also make simpler time dependent forcing  
343  and diagnostic implementation ; and allows a more efficient threading.  \section{Implicit time-stepping: backward method}
344    
345  Although the stagger time step does not affect deeply the  Vertical diffusion and viscosity can be treated implicitly in time
346  structure of the code --- a switch allows to evaluate the  using the backward method which is an intrinsic scheme. For tracers,
347  hydrostatic pressure / geo- potential from new $\theta,S$  the time discretized equation is:
348  instead of the Adams-Bashforth estimation ---  \begin{equation}
349  this affect the way the time discretization is presented :  \tau^{n+1} - \Delta t \partial_r \kappa_v \partial_r \tau^{n+1} =
350    \tau^{n} + \Delta t G_\tau^{(n+1/2)}
351    \label{eq:implicit-diffusion}
352    \end{equation}
353    where $G_\tau^{(n+1/2)}$ is the remaining explicit terms extrapolated
354    using the Adams-Bashforth method as described above.  Equation
355    \ref{eq:implicit-diffusion} can be split split into:
356    \begin{eqnarray}
357    \tau^* & = & \tau^{n} + \Delta t G_\tau^{(n+1/2)}
358    \label{eq:taustar-implicit} \\
359    \tau^{n+1} & = & {\cal L}_\tau^{-1} ( \tau^* )
360    \label{eq:tau-n+1-implicit}
361    \end{eqnarray}
362    where ${\cal L}_\tau^{-1}$ is the inverse of the operator
363    \begin{equation}
364    {\cal L} = \left[ 1 + \Delta t \partial_r \kappa_v \partial_r \right]
365    \end{equation}
366    Equation \ref{eq:taustar-implicit} looks exactly as \ref{eq:taustar}
367    while \ref{eq:tau-n+1-implicit} involves an operator or matrix
368    inversion. By re-arranging \ref{eq:implicit-diffusion} in this way we
369    have cast the method as an explicit prediction step and an implicit
370    step allowing the latter to be inserted into the over all algorithm
371    with minimal interference.
372    
373    Fig.~\ref{fig:call-tree-adams-bashforth} shows the calling sequence for
374    stepping forward a tracer variable such as temperature.
375    
376    In order to fit within the pressure method, the implicit viscosity
377    must not alter the barotropic flow. In other words, it can on ly
378    redistribute momentum in the vertical. The upshot of this is that
379    although vertical viscosity may be backward implicit and
380    unconditionally stable, no-slip boundary conditions may not be made
381    implicit and are thus cast as a an explicit drag term.
382    
383    \section{Synchronous time-stepping: variables co-located in time}
384    \label{sect:adams-bashforth-sync}
385    
386    \begin{figure}
387    \begin{center}
388    \resizebox{5.0in}{!}{\includegraphics{part2/adams-bashforth-sync.eps}}
389    \end{center}
390    \caption{
391    A schematic of the explicit Adams-Bashforth and implicit time-stepping
392    phases of the algorithm. All prognostic variables are co-located in
393    time. Explicit tendencies are evaluated at time level $n$ as a
394    function of the state at that time level (dotted arrow). The explicit
395    tendency from the previous time level, $n-1$, is used to extrapolate
396    tendencies to $n+1/2$ (dashed arrow). This extrapolated tendency
397    allows variables to be stably integrated forward-in-time to render an
398    estimate ($*$-variables) at the $n+1$ time level (solid
399    arc-arrow). The operator ${\cal L}$ formed from implicit-in-time terms
400    is solved to yield the state variables at time level $n+1$. }
401    \label{fig:adams-bashforth-sync}
402    \end{figure}
403    
404    \begin{figure}
405    \begin{center} \fbox{ \begin{minipage}{4.5in} \begin{tabbing}
406    aaa \= aaa \= aaa \= aaa \= aaa \= aaa \kill
407    FORWARD\_STEP \\
408    \> THERMODYNAMICS \\
409    \>\> CALC\_GT \\
410    \>\>\> GAD\_CALC\_RHS \` $G_\theta^n = G_\theta( u, \theta^n )$ (\ref{eq:Gt-n-sync})\\
411    \>\>\> EXTERNAL\_FORCING \` $G_\theta^n = G_\theta^n + {\cal Q}$ \\
412    \>\>\> ADAMS\_BASHFORTH2 \` $G_\theta^{(n+1/2)}$ (\ref{eq:Gt-n+5-sync}) \\
413    \>\> TIMESTEP\_TRACER \` $\tau^*$ (\ref{eq:tstar-sync}) \\
414    \>\> IMPLDIFF \` $\tau^{(n+1)}$ (\ref{eq:t-n+1-sync}) \\
415    \> DYNAMICS \\
416    \>\> CALC\_PHI\_HYD \` $\phi_{hyd}^n$ (\ref{eq:phi-hyd-sync}) \\
417    \>\> MOM\_FLUXFORM or MOM\_VECINV \` $G_{\vec{\bf v}}^n$ (\ref{eq:Gv-n-sync})\\
418    \>\> TIMESTEP \` $\vec{\bf v}^*$ (\ref{eq:Gv-n+5-sync}, \ref{eq:vstar-sync}) \\
419    \>\> IMPLDIFF \` $\vec{\bf v}^{**}$ (\ref{eq:vstarstar-sync}) \\
420    \> SOLVE\_FOR\_PRESSURE \\
421    \>\> CALC\_DIV\_GHAT \` $\eta^*$ (\ref{eq:nstar-sync}) \\
422    \>\> CG2D \` $\eta^{n+1}$ (\ref{eq:elliptic-sync}) \\
423    \> THE\_CORRECTION\_STEP  \\
424    \>\> CALC\_GRAD\_PHI\_SURF \` $\nabla \eta^{n+1}$ \\
425    \>\> CORRECTION\_STEP \` $u^{n+1}$,$v^{n+1}$ (\ref{eq:v-n+1-sync})
426    \end{tabbing} \end{minipage} } \end{center}
427    \caption{
428    Calling tree for the overall synchronous algorithm using
429    Adams-Bashforth time-stepping.}
430    \label{fig:call-tree-adams-bashforth-sync}
431    \end{figure}
432    
433    The Adams-Bashforth extrapolation of explicit tendencies fits neatly
434    into the pressure method algorithm when all state variables are
435    co-located in time. Fig.~\ref{fig:adams-bashforth-sync} illustrates
436    the location of variables in time and the evolution of the algorithm
437    with time. The algorithm can be represented by the sequential solution
438    of the follow equations:
439    \begin{eqnarray}
440    G_{\theta,S}^{n} & = & G_{\theta,S} ( u^n, \theta^n, S^n )
441    \label{eq:Gt-n-sync} \\
442    G_{\theta,S}^{(n+1/2)} & = & (3/2+\epsilon_{AB}) G_{\theta,S}^{n}-(1/2+\epsilon_{AB}) G_{\theta,S}^{n-1}
443    \label{eq:Gt-n+5-sync} \\
444    (\theta^*,S^*) & = & (\theta^{n},S^{n}) + \Delta t G_{\theta,S}^{(n+1/2)}
445    \label{eq:tstar-sync} \\
446    (\theta^{n+1},S^{n+1}) & = & {\cal L}^{-1}_{\theta,S} (\theta^*,S^*)
447    \label{eq:t-n+1-sync} \\
448    \phi^n_{hyd} & = & \int b(\theta^n,S^n) dr
449    \label{eq:phi-hyd-sync} \\
450    \vec{\bf G}_{\vec{\bf v}}^{n} & = & \vec{\bf G}_{\vec{\bf v}} ( \vec{\bf v}^n, \phi^n_{hyd} )
451    \label{eq:Gv-n-sync} \\
452    \vec{\bf G}_{\vec{\bf v}}^{(n+1/2)} & = & (3/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n} - (1/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n-1}
453    \label{eq:Gv-n+5-sync} \\
454    \vec{\bf v}^{*} & = & \vec{\bf v}^{n} + \Delta t \vec{\bf G}_{\vec{\bf v}}^{(n+1/2)}
455    \label{eq:vstar-sync} \\
456    \vec{\bf v}^{**} & = & {\cal L}_{\vec{\bf v}}^{-1} ( \vec{\bf v}^* )
457    \label{eq:vstarstar-sync} \\
458    \eta^* & = & \epsilon_{fs} \left( \eta^{n} +P-E+R \right)- \Delta t
459      \nabla \cdot H \widehat{ \vec{\bf v}^{**} }
460    \label{eq:nstar-sync} \\
461    \nabla \cdot g H \nabla \eta^{n+1} - \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2}
462    & = & - \frac{\eta^*}{\Delta t^2}
463    \label{eq:elliptic-sync} \\
464    \vec{\bf v}^{n+1} & = & \vec{\bf v}^{*} - \Delta t g \nabla \eta^{n+1}
465    \label{eq:v-n+1-sync}
466    \end{eqnarray}
467    Fig.~\ref{fig:adams-bashforth-sync} illustrates the location of
468    variables in time and evolution of the algorithm with time. The
469    Adams-Bashforth extrapolation of the tracer tendencies is illustrated
470    by the dashed arrow, the prediction at $n+1$ is indicated by the
471    solid arc. Inversion of the implicit terms, ${\cal
472    L}^{-1}_{\theta,S}$, then yields the new tracer fields at $n+1$. All
473    these operations are carried out in subroutine {\em THERMODYNAMICS} an
474    subsidiaries, which correspond to equations \ref{eq:Gt-n-sync} to
475    \ref{eq:t-n+1-sync}.
476    Similarly illustrated is the Adams-Bashforth extrapolation of
477    accelerations, stepping forward and solving of implicit viscosity and
478    surface pressure gradient terms, corresponding to equations
479    \ref{eq:Gv-n-sync} to \ref{eq:v-n+1-sync}.
480    These operations are carried out in subroutines {\em DYNAMCIS}, {\em
481    SOLVE\_FOR\_PRESSURE} and {\em THE\_CORRECTION\_STEP}. This, then,
482    represents an entire algorithm for stepping forward the model one
483    time-step. The corresponding calling tree is given in
484    \ref{fig:call-tree-adams-bashforth-sync}.
485    
486    \section{Staggered baroclinic time-stepping}
487    \label{sect:adams-bashforth-staggered}
488    
489    \begin{figure}
490    \begin{center}
491    \resizebox{5.5in}{!}{\includegraphics{part2/adams-bashforth-staggered.eps}}
492    \end{center}
493    \caption{
494    A schematic of the explicit Adams-Bashforth and implicit time-stepping
495    phases of the algorithm but with staggering in time of thermodynamic
496    variables with the flow. Explicit thermodynamics tendencies are
497    evaluated at time level $n-1/2$ as a function of the thermodynamics
498    state at that time level $n$ and flow at time $n$ (dotted arrow). The
499    explicit tendency from the previous time level, $n-3/2$, is used to
500    extrapolate tendencies to $n$ (dashed arrow). This extrapolated
501    tendency allows thermo-dynamics variables to be stably integrated
502    forward-in-time to render an estimate ($*$-variables) at the $n+1/2$
503    time level (solid arc-arrow). The implicit-in-time operator ${\cal
504    L_{\theta,S}}$ is solved to yield the thermodynamic variables at time
505    level $n+1/2$. These are then used to calculate the hydrostatic
506    pressure/geo-potential, $\phi_{hyd}$ (vertical arrows). The
507    hydrostatic pressure gradient is evaluated directly an time level
508    $n+1/2$ in stepping forward the flow variables from $n$ to $n+1$
509    (solid arc-arrow). }
510    \label{fig:adams-bashforth-staggered}
511    \end{figure}
512    
513    For well stratified problems, internal gravity waves may be the
514    limiting process for determining a stable time-step. In the
515    circumstance, it is more efficient to stagger in time the
516    thermodynamic variables with the flow
517    variables. Fig.~\ref{fig:adams-bashforth-staggered} illustrates the
518    staggering and algorithm. The key difference between this and
519    Fig.~\ref{fig:adams-bashforth-sync} is that the new thermodynamics
520    fields are used to compute the hydrostatic pressure at time level
521    $n+1/2$. The essentially allows the gravity wave terms to leap-frog in
522    time giving second order accuracy and more stability.
523    
524    The essential change in the staggered algorithm is the calculation of
525    hydrostatic pressure which, in the context of the synchronous
526    algorithm involves replacing equation \ref{eq:phi-hyd-sync} with
527    \begin{displaymath}
528    \phi_{hyd}^n = \int b(\theta^{n+1},S^{n+1}) dr
529    \end{displaymath}
530    but the pressure gradient must also be taken out of the
531    Adams-Bashforth extrapolation. Also, retaining the integer time-levels,
532    $n$ and $n+1$, does not give a user the sense of where variables are
533    located in time.  Instead, we re-write the entire algorithm,
534    \ref{eq:Gt-n-sync} to \ref{eq:v-n+1-sync}, annotating the
535    position in time of variables appropriately:
536    \begin{eqnarray}
537    G_{\theta,S}^{n-1/2} & = & G_{\theta,S} ( u^n, \theta^{n-1/2}, S^{n-1/2} )
538    \label{eq:Gt-n-staggered} \\
539    G_{\theta,S}^{(n)} & = & (3/2+\epsilon_{AB}) G_{\theta,S}^{n-1/2}-(1/2+\epsilon_{AB}) G_{\theta,S}^{n-3/2}
540    \label{eq:Gt-n+5-staggered} \\
541    (\theta^*,S^*) & = & (\theta^{n},S^{n}) + \Delta t G_{\theta,S}^{(n)}
542    \label{eq:tstar-staggered} \\
543    (\theta^{n+1/2},S^{n+1/2}) & = & {\cal L}^{-1}_{\theta,S} (\theta^*,S^*)
544    \label{eq:t-n+1-staggered} \\
545    \phi^{n+1/2}_{hyd} & = & \int b(\theta^{n+1/2},S^{n+1/2}) dr
546    \label{eq:phi-hyd-staggered} \\
547    \vec{\bf G}_{\vec{\bf v}}^{n} & = & \vec{\bf G}_{\vec{\bf v}} ( \vec{\bf v}^n )
548    \label{eq:Gv-n-staggered} \\
549    \vec{\bf G}_{\vec{\bf v}}^{(n+1/2)} & = & (3/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n} - (1/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n-1}
550    \label{eq:Gv-n+5-staggered} \\
551    \vec{\bf v}^{*} & = & \vec{\bf v}^{n} + \Delta t \left( \vec{\bf G}_{\vec{\bf v}}^{(n+1/2)} - \nabla \phi_{hyd}^{n+1/2} \right)
552    \label{eq:vstar-staggered} \\
553    \vec{\bf v}^{**} & = & {\cal L}_{\vec{\bf v}}^{-1} ( \vec{\bf v}^* )
554    \label{eq:vstarstar-staggered} \\
555    \eta^* & = & \epsilon_{fs} \left( \eta^{n} +P-E+R \right)- \Delta t
556      \nabla \cdot H \widehat{ \vec{\bf v}^{**} }
557    \label{eq:nstar-staggered} \\
558    \nabla \cdot g H \nabla \eta^{n+1} - \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2}
559    & = & - \frac{\eta^*}{\Delta t^2}
560    \label{eq:elliptic-staggered} \\
561    \vec{\bf v}^{n+1} & = & \vec{\bf v}^{*} - \Delta t g \nabla \eta^{n+1}
562    \label{eq:v-n+1-staggered}
563    \end{eqnarray}
564    The calling sequence is unchanged from
565    Fig.~\ref{fig:call-tree-adams-bashforth-sync}. The staggered algorithm
566    is activated with the run-time flag {\bf staggerTimeStep=.TRUE.} in
567    {\em PARM01} of {\em data}.
568    
569    The only difficulty with this approach is apparent in equation
570    \ref{eq:Gt-n-staggered} and illustrated by the dotted arrow
571    connecting $u,v^n$ with $G_\theta^{n-1/2}$. The flow used to advect
572    tracers around is not naturally located in time. This could be avoided
573    by applying the Adams-Bashforth extrapolation to the tracer field
574    itself and advecting that around but this approach is not yet
575    available. We're not aware of any detrimental effect of this
576    feature. The difficulty lies mainly in interpretation of what
577    time-level variables and terms correspond to.
578    
579    
580    \section{Non-hydrostatic formulation}
581    \label{sect:non-hydrostatic}
582    
583    The non-hydrostatic formulation re-introduces the full vertical
584    momentum equation and requires the solution of a 3-D elliptic
585    equations for non-hydrostatic pressure perturbation. We still
586    intergrate vertically for the hydrostatic pressure and solve a 2-D
587    elliptic equation for the surface pressure/elevation for this reduces
588    the amount of work needed to solve for the non-hydrostatic pressure.
589    
590    The momentum equations are discretized in time as follows:
591    \begin{eqnarray}
592    \frac{1}{\Delta t} u^{n+1} + g \partial_x \eta^{n+1} + \partial_x \phi_{nh}^{n+1}
593    & = & \frac{1}{\Delta t} u^{n} + G_u^{(n+1/2)} \label{eq:discrete-time-u-nh} \\
594    \frac{1}{\Delta t} v^{n+1} + g \partial_y \eta^{n+1} + \partial_y \phi_{nh}^{n+1}
595    & = & \frac{1}{\Delta t} v^{n} + G_v^{(n+1/2)} \label{eq:discrete-time-v-nh} \\
596    \frac{1}{\Delta t} w^{n+1} + \partial_r \phi_{nh}^{n+1}
597    & = & \frac{1}{\Delta t} w^{n} + G_w^{(n+1/2)} \label{eq:discrete-time-w-nh} \\
598    \end{eqnarray}
599    which must satisfy the discrete-in-time depth integrated continuity,
600    equation~\ref{eq:discrete-time-backward-free-surface} and the local continuity equation
601    \begin{equation}
602    \partial_x u^{n+1} + \partial_y v^{n+1} + \partial_r w^{n+1} = 0
603    \label{eq:non-divergence-nh}
604    \end{equation}
605    As before, the explicit predictions for momentum are consolidated as:
606  \begin{eqnarray*}  \begin{eqnarray*}
607  \left[ 1 - \partial_r \kappa_v^\theta \partial_r \right]  u^* & = & u^n + \Delta t G_u^{(n+1/2)} \\
608  \theta^{n+1/2} & = & \theta^*  v^* & = & v^n + \Delta t G_v^{(n+1/2)} \\
609  \\  w^* & = & w^n + \Delta t G_w^{(n+1/2)}
 \left[ 1 - \partial_r \kappa_v^S \partial_r \right]  
 S^{n+1/2} & = & S^*  
 \end{eqnarray*}  
 with  
 \begin{eqnarray*}  
 \theta^* & = &  
 \theta ^{(n-1/2)} + \Delta t G_{\theta} ^{(n)}  
 \\  
 S^* & = &  
 S ^{(n-1/2)} + \Delta t G_{S} ^{(n)}  
610  \end{eqnarray*}  \end{eqnarray*}
611  And  but this time we introduce an intermediate step by splitting the
612  \begin{eqnarray*}  tendancy of the flow as follows:
613  %{b'}^{n+1/2} & = & b'(\theta^{n+1/2},S^{n+1/2},r)  \begin{eqnarray}
614  %\\  u^{n+1} = u^{**} - \Delta t \partial_x \phi_{nh}^{n+1}
615  %\partial_r {\phi'_{hyd}}^{n+1/2} & = & {-b'}^{n+1/2}  & &
616  {\phi'_{hyd}}^{n+1/2} & = & \int_{r'}^{R_o} b'(\theta^{n+1/2},S^{n+1/2},r) dr  u^{**} = u^{*} - \Delta t g \partial_x \eta^{n+1} \\
617  %\label{eq-tDsC-hyd}  v^{n+1} = v^{**} - \Delta t \partial_y \phi_{nh}^{n+1}
618  \\  & &
619  \vec{\bf v} ^{n+1}  v^{**} = v^{*} - \Delta t g \partial_y \eta^{n+1}
620  + \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}  \end{eqnarray}
621  + \epsilon_{nh} \Delta t {\bf \nabla}_h {\phi'_{nh}}^{n+1}  Substituting into the depth integrated continuity
622  - \partial_r A_v \partial_r \vec{\bf v}^{n+1}  (equation~\ref{eq:discrete-time-backward-free-surface}) gives
623    \begin{equation}
624    \partial_x H \partial_x \left( g \eta^{n+1} + \widehat{\phi}_{nh}^{n+1} \right)
625    +
626    \partial_y H \partial_y \left( g \eta^{n+1} + \widehat{\phi}_{nh}^{n+1} \right)
627     - \frac{\epsilon_{fs}\eta^*}{\Delta t^2}
628    = - \frac{\eta^*}{\Delta t^2}
629    \end{equation}
630    which is approximated by equation
631    \ref{eq:elliptic-backward-free-surface} on the basis that i)
632    $\phi_{nh}^{n+1}$ is not yet known and ii) $\nabla \widehat{\phi}_{nh}
633    << g \nabla \eta$. If \ref{eq:elliptic-backward-free-surface} is
634    solved accurately then the implication is that $\widehat{\phi}_{nh}
635    \approx 0$ so that thet non-hydrostatic pressure field does not drive
636    barotropic motion.
637    
638    The flow must satisfy non-divergence
639    (equation~\ref{eq:non-divergence-nh}) locally, as well as depth
640    integrated, and this constraint is used to form a 3-D elliptic
641    equations for $\phi_{nh}^{n+1}$:
642    \begin{equation}
643    \partial_{xx} \phi_{nh}^{n+1} + \partial_{yy} \phi_{nh}^{n+1} +
644    \partial_{rr} \phi_{nh}^{n+1} =
645    \partial_x u^{**} + \partial_y v^{**} + \partial_r w^{*}
646    \end{equation}
647    
648    The entire algorithm can be summarized as the sequential solution of
649    the following equations:
650    \begin{eqnarray}
651    u^{*} & = & u^{n} + \Delta t G_u^{(n+1/2)} \label{eq:ustar-nh} \\
652    v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-nh} \\
653    w^{*} & = & w^{n} + \Delta t G_w^{(n+1/2)} \label{eq:wstar-nh} \\
654    \eta^* & = & \epsilon_{fs} \left( \eta^{n} +P-E+R \right)- \Delta t
655      \partial_x H \widehat{u^{*}}
656    + \partial_y H \widehat{v^{*}}
657    \\
658      \partial_x g H \partial_x \eta^{n+1}
659    + \partial_y g H \partial_y \eta^{n+1}
660    - \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2}
661  & = &  & = &
662  \vec{\bf v}^*  - \frac{\eta^*}{\Delta t^2}
663  %\label{eq-tDsC-Hmom}  \label{eq:elliptic-nh}
664  \\  \\
665  \epsilon_{fs} {\eta}^{n+1} + \Delta t  u^{**} & = & u^{*} - \Delta t g \partial_x \eta^{n+1} \label{eq:unx-nh}\\
666  {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o} \vec{\bf v}^{n+1} dr  v^{**} & = & v^{*} - \Delta t g \partial_y \eta^{n+1} \label{eq:vnx-nh}\\
667  & = &  \partial_{xx} \phi_{nh}^{n+1} + \partial_{yy} \phi_{nh}^{n+1} +
668  \epsilon_{fs} {\eta}^{n} + \epsilon_{fw} \Delta_t (P-E)^{n}  \partial_{rr} \phi_{nh}^{n+1} & = &
669  \\  \partial_x u^{**} + \partial_y v^{**} + \partial_r w^{*} \\
670  \epsilon_{nh} \left( \dot{r} ^{n+1}  u^{n+1} & = & u^{**} - \Delta t \partial_x \phi_{nh}^{n+1} \label{eq:un+1-nh}\\
671  + \Delta t \partial_r {\phi'_{nh}} ^{n+1}  v^{n+1} & = & v^{**} - \Delta t \partial_y \phi_{nh}^{n+1} \label{eq:vn+1-nh}\\
672  \right)  \partial_r w^{n+1} & = & - \partial_x u^{n+1} - \partial_y v^{n+1}
673  & = & \epsilon_{nh} \dot{r}^*  \end{eqnarray}
674  %\label{eq-tDsC-Vmom}  where the last equation is solved by vertically integrating for
675  \\  $w^{n+1}$.
 {\bf \nabla}_h \cdot \vec{\bf v}^{n+1} + \partial_r \dot{r}^{n+1}  
 & = & 0  
 %\label{eq-tDsC-cont}  
 \end{eqnarray*}  
 with  
 \begin{eqnarray*}  
 \vec{\bf v}^* & = &  
 \vec{\bf v} ^{n} + \Delta t \vec{\bf G}_{\vec{\bf v}} ^{(n+1/2)}  
 + \Delta t  {\bf \nabla}_h {\phi'_{hyd}}^{n+1/2}  
 \\  
 \dot{r}^* & = &  
 \dot{r} ^{n} + \Delta t G_{\dot{r}} ^{(n+1/2)}  
 \end{eqnarray*}  
676    
 %---------------------------------------------------------------------  
677    
 \subsection{Surface pressure}  
678    
679  Substituting \ref{eq-tDsC-Hmom} into \ref{eq-tDsC-cont}, assuming  \section{Variants on the Free Surface}
680  $\epsilon_{nh} = 0$ yields a Helmholtz equation for ${\eta}^{n+1}$:  
681    We now describe the various formulations of the free-surface that
682    include non-linear forms, implicit in time using Crank-Nicholson,
683    explicit and [one day] split-explicit. First, we'll reiterate the
684    underlying algorithm but this time using the notation consistent with
685    the more general vertical coordinate $r$. The elliptic equation for
686    free-surface coordinate (units of $r$), corresponding to
687    \ref{eq:discrete-time-backward-free-surface}, and
688    assuming no non-hydrostatic effects ($\epsilon_{nh} = 0$) is:
689  \begin{eqnarray}  \begin{eqnarray}
690  \epsilon_{fs} {\eta}^{n+1} -  \epsilon_{fs} {\eta}^{n+1} -
691  {\bf \nabla}_h \cdot \Delta t^2 (R_o-R_{fixed})  {\bf \nabla}_h \cdot \Delta t^2 (R_o-R_{fixed}) {\bf \nabla}_h b_s
692  {\bf \nabla}_h b_s {\eta}^{n+1}  {\eta}^{n+1} = {\eta}^*
 = {\eta}^*  
693  \label{eq-solve2D}  \label{eq-solve2D}
694  \end{eqnarray}  \end{eqnarray}
695  where  where
# Line 356  where Line 700  where
700  \label{eq-solve2D_rhs}  \label{eq-solve2D_rhs}
701  \end{eqnarray}  \end{eqnarray}
702    
703  Once ${\eta}^{n+1}$ has been found substituting into \ref{eq-tDsC-Hmom}  \fbox{ \begin{minipage}{4.75in}
704  would yield $\vec{\bf v}^{n+1}$ if the model is hydrostatic  {\em S/R SOLVE\_FOR\_PRESSURE} ({\em solve\_for\_pressure.F})
705  ($\epsilon_{nh}=0$):  
706    $u^*$: {\bf GuNm1} ({\em DYNVARS.h})
707    
708    $v^*$: {\bf GvNm1} ({\em DYNVARS.h})
709    
710    $\eta^*$: {\bf cg2d\_b} (\em SOLVE\_FOR\_PRESSURE.h)
711    
712    $\eta^{n+1}$: {\bf etaN} (\em DYNVARS.h)
713    
714    \end{minipage} }
715    
716    
717    Once ${\eta}^{n+1}$ has been found, substituting into
718    \ref{eq:discrete-time-u,eq:discrete-time-v} yields $\vec{\bf v}^{n+1}$ if the model is
719    hydrostatic ($\epsilon_{nh}=0$):
720  $$  $$
721  \vec{\bf v}^{n+1} = \vec{\bf v}^{*}  \vec{\bf v}^{n+1} = \vec{\bf v}^{*}
722  - \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}  - \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}
# Line 366  $$ Line 724  $$
724    
725  This is known as the correction step. However, when the model is  This is known as the correction step. However, when the model is
726  non-hydrostatic ($\epsilon_{nh}=1$) we need an additional step and an  non-hydrostatic ($\epsilon_{nh}=1$) we need an additional step and an
727  additional equation for $\phi'_{nh}$. This is obtained by  additional equation for $\phi'_{nh}$. This is obtained by substituting
728  substituting \ref{eq-tDsC-Hmom} and \ref{eq-tDsC-Vmom} into  \ref{eq:discrete-time-u-nh}, \ref{eq:discrete-time-v-nh} and \ref{eq:discrete-time-w-nh}
729  \ref{eq-tDsC-cont}:  into continuity:
730  \begin{equation}  \begin{equation}
731  \left[ {\bf \nabla}_h^2 + \partial_{rr} \right] {\phi'_{nh}}^{n+1}  \left[ {\bf \nabla}_h^2 + \partial_{rr} \right] {\phi'_{nh}}^{n+1}
732  = \frac{1}{\Delta t} \left(  = \frac{1}{\Delta t} \left(
# Line 389  Finally, the horizontal velocities at th Line 747  Finally, the horizontal velocities at th
747  - \epsilon_{nh} \Delta t {\bf \nabla}_h {\phi'_{nh}}^{n+1}  - \epsilon_{nh} \Delta t {\bf \nabla}_h {\phi'_{nh}}^{n+1}
748  \end{equation}  \end{equation}
749  and the vertical velocity is found by integrating the continuity  and the vertical velocity is found by integrating the continuity
750  equation vertically.  equation vertically.  Note that, for the convenience of the restart
751  Note that, for convenience regarding the restart procedure,  procedure, the vertical integration of the continuity equation has
752  the integration of the continuity equation has been  been moved to the beginning of the time step (instead of at the end),
 moved at the beginning of the time step (instead of at the end),  
753  without any consequence on the solution.  without any consequence on the solution.
754    
755  Regarding the implementation, all those computation are done  \fbox{ \begin{minipage}{4.75in}
756  within the routine {\it SOLVE\_FOR\_PRESSURE} and its dependent  {\em S/R CORRECTION\_STEP} ({\em correction\_step.F})
757  {\it CALL}s.  
758  The standard method to solve the 2D elliptic problem (\ref{eq-solve2D})  $\eta^{n+1}$: {\bf etaN} (\em DYNVARS.h)
759  uses the conjugate gradient method (routine {\it CG2D}); The  
760  the solver matrix and conjugate gradient operator are only function  $\phi_{nh}^{n+1}$: {\bf phi\_nh} (\em DYNVARS.h)
761  of the discretized domain and are therefore evaluated separately,  
762  before the time iteration loop, within {\it INI\_CG2D}.  $u^*$: {\bf GuNm1} ({\em DYNVARS.h})
763  The computation of the RHS $\eta^*$ is partly  
764  done in {\it CALC\_DIV\_GHAT} and in {\it SOLVE\_FOR\_PRESSURE}.  $v^*$: {\bf GvNm1} ({\em DYNVARS.h})
765    
766  The same method is applied for the non hydrostatic part, using  $u^{n+1}$: {\bf uVel} ({\em DYNVARS.h})
767  a conjugate gradient 3D solver ({\it CG3D}) that is initialized  
768  in {\it INI\_CG3D}. The RHS terms of 2D and 3D problems  $v^{n+1}$: {\bf vVel} ({\em DYNVARS.h})
769  are computed together, within the same part of the code.  
770    \end{minipage} }
771    
772    
773    
774    Regarding the implementation of the surface pressure solver, all
775    computation are done within the routine {\it SOLVE\_FOR\_PRESSURE} and
776    its dependent calls.  The standard method to solve the 2D elliptic
777    problem (\ref{eq-solve2D}) uses the conjugate gradient method (routine
778    {\it CG2D}); the solver matrix and conjugate gradient operator are
779    only function of the discretized domain and are therefore evaluated
780    separately, before the time iteration loop, within {\it INI\_CG2D}.
781    The computation of the RHS $\eta^*$ is partly done in {\it
782    CALC\_DIV\_GHAT} and in {\it SOLVE\_FOR\_PRESSURE}.
783    
784    The same method is applied for the non hydrostatic part, using a
785    conjugate gradient 3D solver ({\it CG3D}) that is initialized in {\it
786    INI\_CG3D}. The RHS terms of 2D and 3D problems are computed together
787    at the same point in the code.
788    
789    
790    
 \newpage  
 %-----------------------------------------------------------------------------------  
791  \subsection{Crank-Nickelson barotropic time stepping}  \subsection{Crank-Nickelson barotropic time stepping}
792    
793  The full implicit time stepping described previously is unconditionally stable  The full implicit time stepping described previously is
794  but damps the fast gravity waves, resulting in a loss of  unconditionally stable but damps the fast gravity waves, resulting in
795  gravity potential energy.  a loss of potential energy.  The modification presented now allows one
796  The modification presented hereafter allows to combine an implicit part  to combine an implicit part ($\beta,\gamma$) and an explicit part
797  ($\beta,\gamma$) and an explicit part ($1-\beta,1-\gamma$) for the surface  ($1-\beta,1-\gamma$) for the surface pressure gradient ($\beta$) and
798  pressure gradient ($\beta$) and for the barotropic flow divergence ($\gamma$).  for the barotropic flow divergence ($\gamma$).
799  \\  \\
800  For instance, $\beta=\gamma=1$ is the previous fully implicit scheme;  For instance, $\beta=\gamma=1$ is the previous fully implicit scheme;
801  $\beta=\gamma=1/2$ is the non damping (energy conserving), unconditionally  $\beta=\gamma=1/2$ is the non damping (energy conserving), unconditionally
# Line 431  In the code, $\beta,\gamma$ are defined Line 806  In the code, $\beta,\gamma$ are defined
806  {\it implicSurfPress}, {\it implicDiv2DFlow}. They are read from  {\it implicSurfPress}, {\it implicDiv2DFlow}. They are read from
807  the main data file "{\it data}" and are set by default to 1,1.  the main data file "{\it data}" and are set by default to 1,1.
808    
809  Equations \ref{eq-tDsC-Hmom} and \ref{eq-tDsC-eta} are modified as follows:  Equations \ref{eq:ustar-backward-free-surface} --
810    \ref{eq:vn+1-backward-free-surface} are modified as follows:
811  $$  $$
812  \frac{ \vec{\bf v}^{n+1} }{ \Delta t }  \frac{ \vec{\bf v}^{n+1} }{ \Delta t }
813  + {\bf \nabla}_h b_s [ \beta {\eta}^{n+1} + (1-\beta) {\eta}^{n} ]  + {\bf \nabla}_h b_s [ \beta {\eta}^{n+1} + (1-\beta) {\eta}^{n} ]
# Line 457  where: Line 833  where:
833  [ \gamma \vec{\bf v}^* + (1-\gamma) \vec{\bf v}^{n}] dr  [ \gamma \vec{\bf v}^* + (1-\gamma) \vec{\bf v}^{n}] dr
834  \end{eqnarray*}  \end{eqnarray*}
835  \\  \\
836  In the hydrostatic case ($\epsilon_{nh}=0$),  In the hydrostatic case ($\epsilon_{nh}=0$), allowing us to find
837  this allow to find ${\eta}^{n+1}$, according to:  ${\eta}^{n+1}$, thus:
838  $$  $$
839  \epsilon_{fs} {\eta}^{n+1} -  \epsilon_{fs} {\eta}^{n+1} -
840  {\bf \nabla}_h \cdot \beta\gamma \Delta t^2 b_s (R_o - R_{fixed})  {\bf \nabla}_h \cdot \beta\gamma \Delta t^2 b_s (R_o - R_{fixed})
# Line 472  $$ Line 848  $$
848  $$  $$
849    
850  The non-hydrostatic part is solved as described previously.  The non-hydrostatic part is solved as described previously.
851  \\ \\  
852  N.B:  Note that:
853  \\  \begin{enumerate}
854   a) The non-hydrostatic part of the code has not yet been  \item The non-hydrostatic part of the code has not yet been
855  updated, %since it falls out of the purpose of this test,  updated, so that this option cannot be used with $(\beta,\gamma) \neq (1,1)$.
856  so that this option cannot be used with $(\beta,\gamma) \neq (1,1)$.  \item The stability criteria with Crank-Nickelson time stepping
857  \\  for the pure linear gravity wave problem in cartesian coordinates is:
858  b) To remind, the stability criteria with the Crank-Nickelson time stepping  \begin{itemize}
859  for the pure linear gravity wave problem in cartesian coordinate is:  \item $\beta + \gamma < 1$ : unstable
860  \\  \item $\beta \geq 1/2$ and $ \gamma \geq 1/2$ : stable
861  $\star$~ $\beta + \gamma < 1$ : unstable  \item $\beta + \gamma \geq 1$ : stable if
 \\  
 $\star$~ $\beta \geq 1/2$ and $ \gamma \geq 1/2$ : stable  
 \\  
 $\star$~ $\beta + \gamma \geq 1$ : stable if  
 %, for all wave length $(k\Delta x,l\Delta y)$  
862  $$  $$
863  c_{max}^2 (\beta - 1/2)(\gamma - 1/2) + 1 \geq 0  c_{max}^2 (\beta - 1/2)(\gamma - 1/2) + 1 \geq 0
864  $$  $$
# Line 502  $$ Line 873  $$
873  c_{max} =  2 \Delta t \: \sqrt{g H} \:  c_{max} =  2 \Delta t \: \sqrt{g H} \:
874  \sqrt{ \frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} }  \sqrt{ \frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} }
875  $$  $$
876    \end{itemize}
877    \end{enumerate}
878    

Legend:
Removed from v.1.5  
changed lines
  Added in v.1.16

  ViewVC Help
Powered by ViewVC 1.1.22