/[MITgcm]/manual/s_algorithm/text/time_stepping.tex
ViewVC logotype

Annotation of /manual/s_algorithm/text/time_stepping.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.6 - (hide annotations) (download) (as text)
Wed Sep 26 20:19:52 2001 UTC (23 years, 9 months ago) by adcroft
Branch: MAIN
Changes since 1.5: +163 -224 lines
File MIME type: application/x-tex
Changes from John...

1 adcroft 1.6 % $Header: /u/gcmpack/mitgcmdoc/part2/time_stepping.tex,v 1.5 2001/09/24 19:30:40 jmc Exp $
2 jmc 1.2 % $Name: $
3 adcroft 1.1
4     The convention used in this section is as follows:
5 adcroft 1.6 Time is ``discretized'' using a time step $\Delta t$
6 adcroft 1.1 and $\Phi^n$ refers to the variable $\Phi$
7 adcroft 1.6 at time $t = n \Delta t$ . We use the notation $\Phi^{(n)}$
8 adcroft 1.1 when time interpolation is required to estimate the value of $\phi$
9     at the time $n \Delta t$.
10    
11 jmc 1.3 \section{Time integration}
12 adcroft 1.1
13     The discretization in time of the model equations (cf section I )
14     does not depend of the discretization in space of each
15 adcroft 1.6 term and so this section can be read independently.
16 adcroft 1.1
17     The continuous form of the model equations is:
18    
19     \begin{eqnarray}
20     \partial_t \theta & = & G_\theta
21 jmc 1.4 \label{eq-tCsC-theta}
22 adcroft 1.1 \\
23     \partial_t S & = & G_s
24 jmc 1.4 \label{eq-tCsC-salt}
25 adcroft 1.1 \\
26     b' & = & b'(\theta,S,r)
27     \\
28     \partial_r \phi'_{hyd} & = & -b'
29 jmc 1.4 \label{eq-tCsC-hyd}
30 adcroft 1.1 \\
31     \partial_t \vec{\bf v}
32 jmc 1.3 + {\bf \nabla}_h b_s \eta
33     + \epsilon_{nh} {\bf \nabla}_h \phi'_{nh}
34 adcroft 1.1 & = & \vec{\bf G}_{\vec{\bf v}}
35 jmc 1.3 - {\bf \nabla}_h \phi'_{hyd}
36 jmc 1.4 \label{eq-tCsC-Hmom}
37 adcroft 1.1 \\
38     \epsilon_{nh} \frac {\partial{\dot{r}}}{\partial{t}}
39     + \epsilon_{nh} \partial_r \phi'_{nh}
40     & = & \epsilon_{nh} G_{\dot{r}}
41 jmc 1.4 \label{eq-tCsC-Vmom}
42 adcroft 1.1 \\
43 jmc 1.3 {\bf \nabla}_h \cdot \vec{\bf v} + \partial_r \dot{r}
44 adcroft 1.1 & = & 0
45 jmc 1.4 \label{eq-tCsC-cont}
46 adcroft 1.1 \end{eqnarray}
47     where
48     \begin{eqnarray*}
49     G_\theta & = &
50 jmc 1.3 - \vec{\bf v} \cdot {\bf \nabla} \theta + {\cal Q}_\theta
51 adcroft 1.1 \\
52     G_S & = &
53 jmc 1.3 - \vec{\bf v} \cdot {\bf \nabla} S + {\cal Q}_S
54 adcroft 1.1 \\
55     \vec{\bf G}_{\vec{\bf v}}
56     & = &
57 jmc 1.3 - \vec{\bf v} \cdot {\bf \nabla} \vec{\bf v}
58 adcroft 1.1 - f \hat{\bf k} \wedge \vec{\bf v}
59     + \vec{\cal F}_{\vec{\bf v}}
60     \\
61     G_{\dot{r}}
62     & = &
63 jmc 1.3 - \vec{\bf v} \cdot {\bf \nabla} \dot{r}
64 adcroft 1.1 + {\cal F}_{\dot{r}}
65     \end{eqnarray*}
66 adcroft 1.6 The exact form of all the ``{\it G}''s terms is described in the next
67     section \ref{sect:discrete}. Here its sufficient to mention that they contains
68     all the RHS terms except the pressure/geo-potential terms.
69    
70     The switch $\epsilon_{nh}$ allows one to activate the non-hydrostatic
71     mode ($\epsilon_{nh}=1$) for the ocean model. Otherwise, in the
72     hydrostatic limit $\epsilon_{nh} = 0$ and equation \ref{eq-tCsC-Vmom}
73     is not used.
74    
75     As discussed in section \ref{sect:1.3.6.2}, the equation for $\eta$ is
76     obtained by integrating the continuity equation over the entire depth
77     of the fluid, from $R_{fixed}(x,y)$ up to $R_o(x,y)$. The linear free
78     surface evolves according to:
79 jmc 1.2 \begin{eqnarray}
80 adcroft 1.1 \epsilon_{fs} \partial_t \eta =
81     \left. \dot{r} \right|_{r=r_{surf}} + \epsilon_{fw} (P-E) =
82 jmc 1.5 - {\bf \nabla} \cdot \int_{R_{fixed}}^{R_o} \vec{\bf v} dr
83 adcroft 1.1 + \epsilon_{fw} (P-E)
84 jmc 1.4 \label{eq-tCsC-eta}
85 jmc 1.2 \end{eqnarray}
86 adcroft 1.1
87 adcroft 1.6 Here, $\epsilon_{fs}$ is a flag to switch between the free-surface,
88     $\epsilon_{fs}=1$, and a rigid-lid, $\epsilon_{fs}=0$. The flag
89     $\epsilon_{fw}$ determines whether an exchange of fresh water is
90     included at the ocean surface (natural BC) ($\epsilon_{fw} = 1$) or
91     not ($\epsilon_{fw} = 0$).
92 adcroft 1.1
93 adcroft 1.6 The hydrostatic potential is found by integrating (equation
94     \ref{eq-tCsC-hyd}) with the boundary condition that
95 adcroft 1.1 $\phi'_{hyd}(r=R_o) = 0$:
96     \begin{eqnarray*}
97     & &
98     \int_{r'}^{R_o} \partial_r \phi'_{hyd} dr =
99     \left[ \phi'_{hyd} \right]_{r'}^{R_o} =
100     \int_{r'}^{R_o} - b' dr
101     \\
102     \Rightarrow & &
103     \phi'_{hyd}(x,y,r') = \int_{r'}^{R_o} b' dr
104     \end{eqnarray*}
105    
106 jmc 1.3 \subsection{General method}
107    
108 adcroft 1.6 An overview of the general method is now presented with explicit
109     references to the Fortran code. We often refer to the discretized
110     equations of the model that are detailed in the following sections.
111    
112     The general algorithm consist of a ``predictor step'' that computes
113     the forward tendencies ("G" terms") comprising of explicit-in-time
114     terms and the ``first guess'' values (star notation): $\theta^*, S^*,
115     \vec{\bf v}^*$ (and $\dot{r}^*$ in non-hydrostatic mode). This is done
116     in the two routines {\it THERMODYNAMICS} and {\it DYNAMICS}.
117    
118     Terms that are integrated implicitly in time are handled at the end of
119     the {\it THERMODYNAMICS} and {\it DYNAMICS} routines. Then the
120     surface pressure and non hydrostatic pressure are solved for in ({\it
121     SOLVE\_FOR\_PRESSURE}).
122    
123     Finally, in the ``corrector step'', (routine {\it
124     THE\_CORRECTION\_STEP}) the new values of $u,v,w,\theta,S$ are
125     determined (see details in \ref{sect:II.1.3}).
126    
127     At this point, the regular time stepping process is complete. However,
128     after the correction step there are optional adjustments such as
129     convective adjustment or filters (zonal FFT filter, shapiro filter)
130     that can be applied on both momentum and tracer fields, just prior to
131     incrementing the time level to $n+1$.
132    
133     Since the pressure solver precision is of the order of the ``target
134     residual'' and can be lower than the the computer truncation error,
135     and also because some filters might alter the divergence part of the
136     flow field, a final evaluation of the surface r anomaly $\eta^{n+1}$
137     is performed in {\it CALC\_EXACT\_ETA}. This ensures exact volume
138     conservation. Note that there is no need for an equivalent
139     non-hydrostatic ``exact conservation'' step, since by default $w$ is
140     already computed after the filters are applied.
141    
142     Optional forcing terms (usually part of a physics ``package''), that
143     account for a specific source or sink process (e.g. condensation as a
144     sink of water vapor Q) are generally incorporated in the main
145     algorithm as follows: at the the beginning of the time step, the
146     additional tendencies are computed as a function of the present state
147     (time step $n$) and external forcing; then within the main part of
148     model, only those new tendencies are added to the model variables.
149 jmc 1.3
150     [more details needed]\\
151 jmc 1.4
152 jmc 1.3 The atmospheric physics follows this general scheme.
153    
154 jmc 1.4 [more about C\_grid, A\_grid conversion \& drag term]\\
155    
156 adcroft 1.6
157    
158 jmc 1.3 \subsection{Standard synchronous time stepping}
159 adcroft 1.1
160 adcroft 1.6 In the standard formulation, the surface pressure is evaluated at time
161     step n+1 (an implicit method). Equations \ref{eq-tCsC-theta} to
162     \ref{eq-tCsC-cont} are then discretized in time as follows:
163 adcroft 1.1 \begin{eqnarray}
164     \left[ 1 - \partial_r \kappa_v^\theta \partial_r \right]
165     \theta^{n+1} & = & \theta^*
166 jmc 1.4 \label{eq-tDsC-theta}
167 adcroft 1.1 \\
168     \left[ 1 - \partial_r \kappa_v^S \partial_r \right]
169     S^{n+1} & = & S^*
170 jmc 1.4 \label{eq-tDsC-salt}
171 adcroft 1.1 \\
172     %{b'}^{n} & = & b'(\theta^{n},S^{n},r)
173     %\partial_r {\phi'_{hyd}}^{n} & = & {-b'}^{n}
174     %\\
175     {\phi'_{hyd}}^{n} & = & \int_{r'}^{R_o} b'(\theta^{n},S^{n},r) dr
176 jmc 1.4 \label{eq-tDsC-hyd}
177 adcroft 1.1 \\
178     \vec{\bf v} ^{n+1}
179 jmc 1.3 + \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}
180     + \epsilon_{nh} \Delta t {\bf \nabla} {\phi'_{nh}}^{n+1}
181 adcroft 1.1 - \partial_r A_v \partial_r \vec{\bf v}^{n+1}
182     & = &
183     \vec{\bf v}^*
184 jmc 1.4 \label{eq-tDsC-Hmom}
185 adcroft 1.1 \\
186     \epsilon_{fs} {\eta}^{n+1} + \Delta t
187 jmc 1.5 {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o} \vec{\bf v}^{n+1} dr
188 adcroft 1.1 & = &
189     \epsilon_{fs} {\eta}^{n} + \epsilon_{fw} \Delta_t (P-E)^{n}
190     \nonumber
191     \\
192     % = \epsilon_{fs} {\eta}^{n} & + & \epsilon_{fw} \Delta_t (P-E)^{n}
193 jmc 1.4 \label{eq-tDsC-eta}
194 adcroft 1.1 \\
195     \epsilon_{nh} \left( \dot{r} ^{n+1}
196     + \Delta t \partial_r {\phi'_{nh}} ^{n+1}
197     \right)
198     & = & \epsilon_{nh} \dot{r}^*
199 jmc 1.4 \label{eq-tDsC-Vmom}
200 adcroft 1.1 \\
201 jmc 1.3 {\bf \nabla}_h \cdot \vec{\bf v}^{n+1} + \partial_r \dot{r}^{n+1}
202 adcroft 1.1 & = & 0
203 jmc 1.4 \label{eq-tDsC-cont}
204 adcroft 1.1 \end{eqnarray}
205     where
206     \begin{eqnarray}
207     \theta^* & = &
208     \theta ^{n} + \Delta t G_{\theta} ^{(n+1/2)}
209     \\
210     S^* & = &
211     S ^{n} + \Delta t G_{S} ^{(n+1/2)}
212     \\
213     \vec{\bf v}^* & = &
214     \vec{\bf v}^{n} + \Delta t \vec{\bf G}_{\vec{\bf v}} ^{(n+1/2)}
215 jmc 1.3 + \Delta t {\bf \nabla}_h {\phi'_{hyd}}^{(n+1/2)}
216 adcroft 1.1 \\
217     \dot{r}^* & = &
218     \dot{r} ^{n} + \Delta t G_{\dot{r}} ^{(n+1/2)}
219     \end{eqnarray}
220    
221 adcroft 1.6 Note that implicit vertical viscosity and diffusivity terms are not
222     considered as part of the ``{\it G}'' terms, but are written
223     separately here.
224    
225     The default time-stepping method is the Adams-Bashforth quasi-second
226     order scheme in which the ``G'' terms are extrapolated forward in time
227     from time-levels $n-1$ and $n$ to time-level $n+1/2$ and provides a
228     simple but stable algorithm:
229     \begin{equation}
230     G^{(n+1/2)} = G^n + (1/2+\epsilon_{AB}) (G^n - G^{n-1})
231     \end{equation}
232     where $\epsilon_{AB}$ is a small number used to stabilize the time
233     stepping.
234    
235     In the standard non-staggered formulation, the Adams-Bashforth time
236     stepping is also applied to the hydrostatic pressure/geo-potential
237     gradient, $\nabla_h \Phi'_{hyd}$. Note that presently, this term is in
238     fact incorporated to the $\vec{\bf G}_{\vec{\bf v}}$ arrays ({\bf
239     gU,gV}).
240     \marginpar{JMC: Clarify this term?}
241    
242 adcroft 1.1
243 jmc 1.3 \subsection{Stagger baroclinic time stepping}
244 adcroft 1.1
245 adcroft 1.6 An alternative to synchronous time-stepping is to stagger the momentum
246     and tracer fields in time. This allows the evaluation and gradient of
247     $\phi'_{hyd}$ to be centered in time with out needing to use the
248     Adams-Bashforth extrapoltion. This option is known as staggered
249     baroclinic time stepping because tracer and momentum are stepped
250     forward-in-time one after the other. It can be activated by turning
251     on a run-time parameter {\bf staggerTimeStep} in namelist ``{\it
252     PARM01}''.
253    
254     The main advantage of staggered time-stepping compared to synchronous,
255     is improved stability to internal gravity wave motions and a very
256     natural implementation of a 2nd order in time hydrostatic
257     pressure/geo-potential gradient term. However, synchronous
258     time-stepping might be better for convection problems, time dependent
259     forcing and diagnosing the model are also easier and it allows a more
260     efficient parallel decomposition.
261 adcroft 1.1
262 adcroft 1.6 The staggered baroclinic time-stepping scheme is equations
263     \ref{eq-tDsC-theta} to \ref{eq-tDsC-cont} except that \ref{eq-tDsC-hyd} is replaced with:
264     \begin{equation}
265     {\phi'_{hyd}}^{n+1/2} = \int_{r'}^{R_o} b'(\theta^{n+1/2},S^{n+1/2},r)
266     dr
267     \end{equation}
268     and the time-level for tracers has been shifted back by half:
269 adcroft 1.1 \begin{eqnarray*}
270     \theta^* & = &
271     \theta ^{(n-1/2)} + \Delta t G_{\theta} ^{(n)}
272     \\
273     S^* & = &
274     S ^{(n-1/2)} + \Delta t G_{S} ^{(n)}
275     \\
276 adcroft 1.6 \left[ 1 - \partial_r \kappa_v^\theta \partial_r \right]
277     \theta^{n+1/2} & = & \theta^*
278 adcroft 1.1 \\
279 adcroft 1.6 \left[ 1 - \partial_r \kappa_v^S \partial_r \right]
280     S^{n+1/2} & = & S^*
281 adcroft 1.1 \end{eqnarray*}
282    
283    
284 jmc 1.3 \subsection{Surface pressure}
285 adcroft 1.1
286 jmc 1.4 Substituting \ref{eq-tDsC-Hmom} into \ref{eq-tDsC-cont}, assuming
287 adcroft 1.1 $\epsilon_{nh} = 0$ yields a Helmholtz equation for ${\eta}^{n+1}$:
288 jmc 1.2 \begin{eqnarray}
289 adcroft 1.1 \epsilon_{fs} {\eta}^{n+1} -
290 jmc 1.5 {\bf \nabla}_h \cdot \Delta t^2 (R_o-R_{fixed})
291 jmc 1.3 {\bf \nabla}_h b_s {\eta}^{n+1}
292 adcroft 1.1 = {\eta}^*
293 jmc 1.4 \label{eq-solve2D}
294 jmc 1.2 \end{eqnarray}
295 adcroft 1.1 where
296 jmc 1.2 \begin{eqnarray}
297 adcroft 1.1 {\eta}^* = \epsilon_{fs} \: {\eta}^{n} -
298 jmc 1.5 \Delta t {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o} \vec{\bf v}^* dr
299 adcroft 1.1 \: + \: \epsilon_{fw} \Delta_t (P-E)^{n}
300 jmc 1.4 \label{eq-solve2D_rhs}
301 jmc 1.2 \end{eqnarray}
302 adcroft 1.1
303 adcroft 1.6 Once ${\eta}^{n+1}$ has been found, substituting into
304     \ref{eq-tDsC-Hmom} yields $\vec{\bf v}^{n+1}$ if the model is
305     hydrostatic ($\epsilon_{nh}=0$):
306 adcroft 1.1 $$
307     \vec{\bf v}^{n+1} = \vec{\bf v}^{*}
308 jmc 1.3 - \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}
309 adcroft 1.1 $$
310    
311     This is known as the correction step. However, when the model is
312     non-hydrostatic ($\epsilon_{nh}=1$) we need an additional step and an
313 adcroft 1.6 additional equation for $\phi'_{nh}$. This is obtained by substituting
314     \ref{eq-tDsC-Hmom} and \ref{eq-tDsC-Vmom} into
315 jmc 1.4 \ref{eq-tDsC-cont}:
316 adcroft 1.1 \begin{equation}
317 jmc 1.3 \left[ {\bf \nabla}_h^2 + \partial_{rr} \right] {\phi'_{nh}}^{n+1}
318 adcroft 1.1 = \frac{1}{\Delta t} \left(
319 jmc 1.3 {\bf \nabla}_h \cdot \vec{\bf v}^{**} + \partial_r \dot{r}^* \right)
320 adcroft 1.1 \end{equation}
321     where
322     \begin{displaymath}
323 jmc 1.3 \vec{\bf v}^{**} = \vec{\bf v}^* - \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}
324 adcroft 1.1 \end{displaymath}
325     Note that $\eta^{n+1}$ is also used to update the second RHS term
326     $\partial_r \dot{r}^* $ since
327     the vertical velocity at the surface ($\dot{r}_{surf}$)
328     is evaluated as $(\eta^{n+1} - \eta^n) / \Delta t$.
329    
330     Finally, the horizontal velocities at the new time level are found by:
331     \begin{equation}
332     \vec{\bf v}^{n+1} = \vec{\bf v}^{**}
333 jmc 1.3 - \epsilon_{nh} \Delta t {\bf \nabla}_h {\phi'_{nh}}^{n+1}
334 adcroft 1.1 \end{equation}
335     and the vertical velocity is found by integrating the continuity
336 adcroft 1.6 equation vertically. Note that, for the convenience of the restart
337     procedure, the vertical integration of the continuity equation has
338     been moved to the beginning of the time step (instead of at the end),
339 adcroft 1.1 without any consequence on the solution.
340    
341 adcroft 1.6 Regarding the implementation of the surface pressure solver, all
342     computation are done within the routine {\it SOLVE\_FOR\_PRESSURE} and
343     its dependent calls. The standard method to solve the 2D elliptic
344     problem (\ref{eq-solve2D}) uses the conjugate gradient method (routine
345     {\it CG2D}); the solver matrix and conjugate gradient operator are
346     only function of the discretized domain and are therefore evaluated
347     separately, before the time iteration loop, within {\it INI\_CG2D}.
348     The computation of the RHS $\eta^*$ is partly done in {\it
349     CALC\_DIV\_GHAT} and in {\it SOLVE\_FOR\_PRESSURE}.
350    
351     The same method is applied for the non hydrostatic part, using a
352     conjugate gradient 3D solver ({\it CG3D}) that is initialized in {\it
353     INI\_CG3D}. The RHS terms of 2D and 3D problems are computed together
354     at the same point in the code.
355    
356 adcroft 1.1
357     \subsection{Crank-Nickelson barotropic time stepping}
358    
359 adcroft 1.6 The full implicit time stepping described previously is
360     unconditionally stable but damps the fast gravity waves, resulting in
361     a loss of potential energy. The modification presented now allows one
362     to combine an implicit part ($\beta,\gamma$) and an explicit part
363     ($1-\beta,1-\gamma$) for the surface pressure gradient ($\beta$) and
364     for the barotropic flow divergence ($\gamma$).
365 adcroft 1.1 \\
366     For instance, $\beta=\gamma=1$ is the previous fully implicit scheme;
367     $\beta=\gamma=1/2$ is the non damping (energy conserving), unconditionally
368     stable, Crank-Nickelson scheme; $(\beta,\gamma)=(1,0)$ or $=(0,1)$
369     corresponds to the forward - backward scheme that conserves energy but is
370     only stable for small time steps.\\
371     In the code, $\beta,\gamma$ are defined as parameters, respectively
372     {\it implicSurfPress}, {\it implicDiv2DFlow}. They are read from
373     the main data file "{\it data}" and are set by default to 1,1.
374    
375 jmc 1.4 Equations \ref{eq-tDsC-Hmom} and \ref{eq-tDsC-eta} are modified as follows:
376 adcroft 1.1 $$
377     \frac{ \vec{\bf v}^{n+1} }{ \Delta t }
378 jmc 1.3 + {\bf \nabla}_h b_s [ \beta {\eta}^{n+1} + (1-\beta) {\eta}^{n} ]
379     + \epsilon_{nh} {\bf \nabla}_h {\phi'_{nh}}^{n+1}
380 adcroft 1.1 = \frac{ \vec{\bf v}^* }{ \Delta t }
381     $$
382     $$
383     \epsilon_{fs} \frac{ {\eta}^{n+1} - {\eta}^{n} }{ \Delta t}
384 jmc 1.5 + {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o}
385 adcroft 1.1 [ \gamma \vec{\bf v}^{n+1} + (1-\gamma) \vec{\bf v}^{n}] dr
386     = \epsilon_{fw} (P-E)
387     $$
388     where:
389     \begin{eqnarray*}
390     \vec{\bf v}^* & = &
391     \vec{\bf v} ^{n} + \Delta t \vec{\bf G}_{\vec{\bf v}} ^{(n+1/2)}
392 jmc 1.3 + (\beta-1) \Delta t {\bf \nabla}_h b_s {\eta}^{n}
393     + \Delta t {\bf \nabla}_h {\phi'_{hyd}}^{(n+1/2)}
394 adcroft 1.1 \\
395     {\eta}^* & = &
396     \epsilon_{fs} {\eta}^{n} + \epsilon_{fw} \Delta t (P-E)
397 jmc 1.5 - \Delta t {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o}
398 adcroft 1.1 [ \gamma \vec{\bf v}^* + (1-\gamma) \vec{\bf v}^{n}] dr
399     \end{eqnarray*}
400     \\
401 adcroft 1.6 In the hydrostatic case ($\epsilon_{nh}=0$), allowing us to find
402     ${\eta}^{n+1}$, thus:
403 adcroft 1.1 $$
404     \epsilon_{fs} {\eta}^{n+1} -
405 jmc 1.5 {\bf \nabla}_h \cdot \beta\gamma \Delta t^2 b_s (R_o - R_{fixed})
406 jmc 1.3 {\bf \nabla}_h {\eta}^{n+1}
407 adcroft 1.1 = {\eta}^*
408     $$
409     and then to compute (correction step):
410     $$
411     \vec{\bf v}^{n+1} = \vec{\bf v}^{*}
412 jmc 1.3 - \beta \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}
413 adcroft 1.1 $$
414    
415     The non-hydrostatic part is solved as described previously.
416 adcroft 1.6
417     Note that:
418     \begin{enumerate}
419     \item The non-hydrostatic part of the code has not yet been
420     updated, so that this option cannot be used with $(\beta,\gamma) \neq (1,1)$.
421     \item The stability criteria with Crank-Nickelson time stepping
422     for the pure linear gravity wave problem in cartesian coordinates is:
423     \begin{itemize}
424     \item $\beta + \gamma < 1$ : unstable
425     \item $\beta \geq 1/2$ and $ \gamma \geq 1/2$ : stable
426     \item $\beta + \gamma \geq 1$ : stable if
427 adcroft 1.1 $$
428     c_{max}^2 (\beta - 1/2)(\gamma - 1/2) + 1 \geq 0
429     $$
430     $$
431     \mbox{with }~
432     %c^2 = 2 g H {\Delta t}^2
433     %(\frac{1-cos 2 \pi / k}{\Delta x^2}
434     %+\frac{1-cos 2 \pi / l}{\Delta y^2})
435     %$$
436     %Practically, the most stringent condition is obtained with $k=l=2$ :
437     %$$
438     c_{max} = 2 \Delta t \: \sqrt{g H} \:
439     \sqrt{ \frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} }
440     $$
441 adcroft 1.6 \end{itemize}
442     \end{enumerate}
443    

  ViewVC Help
Powered by ViewVC 1.1.22