/[MITgcm]/manual/s_algorithm/text/time_stepping.tex
ViewVC logotype

Annotation of /manual/s_algorithm/text/time_stepping.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.16 - (hide annotations) (download) (as text)
Thu Aug 7 18:27:52 2003 UTC (21 years, 10 months ago) by edhill
Branch: MAIN
Changes since 1.15: +7 -6 lines
File MIME type: application/x-tex
Two improvements:
  - the manual build now works on a "dirty" (post-verification-runs)
    source tree
  - various small fixes to the manual (mostly Y. Hu's comments)

1 edhill 1.16 % $Header: /u/u3/gcmpack/manual/part2/time_stepping.tex,v 1.15 2002/02/28 19:32:19 cnh Exp $
2 jmc 1.2 % $Name: $
3 adcroft 1.1
4 cnh 1.15 This chapter lays out the numerical schemes that are
5     employed in the core MITgcm algorithm. Whenever possible
6     links are made to actual program code in the MITgcm implementation.
7     The chapter begins with a discussion of the temporal discretization
8     used in MITgcm. This discussion is followed by sections that
9     describe the spatial discretization. The schemes employed for momentum
10     terms are described first, afterwards the schemes that apply to
11     passive and dynamically active tracers are described.
12    
13    
14     \section{Time-stepping}
15 adcroft 1.8 The equations of motion integrated by the model involve four
16     prognostic equations for flow, $u$ and $v$, temperature, $\theta$, and
17     salt/moisture, $S$, and three diagnostic equations for vertical flow,
18     $w$, density/buoyancy, $\rho$/$b$, and pressure/geo-potential,
19     $\phi_{hyd}$. In addition, the surface pressure or height may by
20     described by either a prognostic or diagnostic equation and if
21     non-hydrostatics terms are included then a diagnostic equation for
22     non-hydrostatic pressure is also solved. The combination of prognostic
23     and diagnostic equations requires a model algorithm that can march
24     forward prognostic variables while satisfying constraints imposed by
25     diagnostic equations.
26    
27 cnh 1.9 Since the model comes in several flavors and formulation, it would be
28 adcroft 1.8 confusing to present the model algorithm exactly as written into code
29     along with all the switches and optional terms. Instead, we present
30     the algorithm for each of the basic formulations which are:
31     \begin{enumerate}
32     \item the semi-implicit pressure method for hydrostatic equations
33     with a rigid-lid, variables co-located in time and with
34     Adams-Bashforth time-stepping, \label{it:a}
35     \item as \ref{it:a}. but with an implicit linear free-surface, \label{it:b}
36     \item as \ref{it:a}. or \ref{it:b}. but with variables staggered in time,
37     \label{it:c}
38     \item as \ref{it:a}. or \ref{it:b}. but with non-hydrostatic terms included,
39     \item as \ref{it:b}. or \ref{it:c}. but with non-linear free-surface.
40     \end{enumerate}
41    
42     In all the above configurations it is also possible to substitute the
43     Adams-Bashforth with an alternative time-stepping scheme for terms
44     evaluated explicitly in time. Since the over-arching algorithm is
45     independent of the particular time-stepping scheme chosen we will
46     describe first the over-arching algorithm, known as the pressure
47     method, with a rigid-lid model in section
48     \ref{sect:pressure-method-rigid-lid}. This algorithm is essentially
49     unchanged, apart for some coefficients, when the rigid lid assumption
50     is replaced with a linearized implicit free-surface, described in
51 cnh 1.9 section \ref{sect:pressure-method-linear-backward}. These two flavors
52 adcroft 1.8 of the pressure-method encompass all formulations of the model as it
53     exists today. The integration of explicit in time terms is out-lined
54     in section \ref{sect:adams-bashforth} and put into the context of the
55     overall algorithm in sections \ref{sect:adams-bashforth-sync} and
56     \ref{sect:adams-bashforth-staggered}. Inclusion of non-hydrostatic
57     terms requires applying the pressure method in three dimensions
58     instead of two and this algorithm modification is described in section
59     \ref{sect:non-hydrostatic}. Finally, the free-surface equation may be
60     treated more exactly, including non-linear terms, and this is
61     described in section \ref{sect:nonlinear-freesurface}.
62    
63    
64     \section{Pressure method with rigid-lid} \label{sect:pressure-method-rigid-lid}
65    
66     \begin{figure}
67     \begin{center}
68     \resizebox{4.0in}{!}{\includegraphics{part2/pressure-method-rigid-lid.eps}}
69     \end{center}
70     \caption{
71     A schematic of the evolution in time of the pressure method
72     algorithm. A prediction for the flow variables at time level $n+1$ is
73     made based only on the explicit terms, $G^{(n+^1/_2)}$, and denoted
74     $u^*$, $v^*$. Next, a pressure field is found such that $u^{n+1}$,
75 cnh 1.9 $v^{n+1}$ will be non-divergent. Conceptually, the $*$ quantities
76 adcroft 1.8 exist at time level $n+1$ but they are intermediate and only
77     temporary.}
78     \label{fig:pressure-method-rigid-lid}
79     \end{figure}
80    
81     \begin{figure}
82     \begin{center} \fbox{ \begin{minipage}{4.5in} \begin{tabbing}
83     aaa \= aaa \= aaa \= aaa \= aaa \= aaa \kill
84 edhill 1.16 \filelink{FORWARD\_STEP}{model-src-forward_step.F} \\
85 adcroft 1.8 \> DYNAMICS \\
86     \>\> TIMESTEP \` $u^*$,$v^*$ (\ref{eq:ustar-rigid-lid},\ref{eq:vstar-rigid-lid}) \\
87     \> SOLVE\_FOR\_PRESSURE \\
88     \>\> CALC\_DIV\_GHAT \` $H\widehat{u^*}$,$H\widehat{v^*}$ (\ref{eq:elliptic}) \\
89     \>\> CG2D \` $\eta^{n+1}$ (\ref{eq:elliptic}) \\
90     \> THE\_CORRECTION\_STEP \\
91     \>\> CALC\_GRAD\_PHI\_SURF \` $\nabla \eta^{n+1}$ \\
92     \>\> CORRECTION\_STEP \` $u^{n+1}$,$v^{n+1}$ (\ref{eq:un+1-rigid-lid},\ref{eq:vn+1-rigid-lid})
93     \end{tabbing} \end{minipage} } \end{center}
94 edhill 1.16 \caption{Calling tree for the pressure method algorithm
95     (\filelink{FORWARD\_STEP}{model-src-forward_step.F})}
96 adcroft 1.8 \label{fig:call-tree-pressure-method}
97     \end{figure}
98    
99     The horizontal momentum and continuity equations for the ocean
100     (\ref{eq:ocean-mom} and \ref{eq:ocean-cont}), or for the atmosphere
101     (\ref{eq:atmos-mom} and \ref{eq:atmos-cont}), can be summarized by:
102     \begin{eqnarray}
103     \partial_t u + g \partial_x \eta & = & G_u \\
104     \partial_t v + g \partial_y \eta & = & G_v \\
105     \partial_x u + \partial_y v + \partial_z w & = & 0
106     \end{eqnarray}
107     where we are adopting the oceanic notation for brevity. All terms in
108     the momentum equations, except for surface pressure gradient, are
109     encapsulated in the $G$ vector. The continuity equation, when
110     integrated over the fluid depth, $H$, and with the rigid-lid/no normal
111     flow boundary conditions applied, becomes:
112     \begin{equation}
113     \partial_x H \widehat{u} + \partial_y H \widehat{v} = 0
114     \label{eq:rigid-lid-continuity}
115     \end{equation}
116     Here, $H\widehat{u} = \int_H u dz$ is the depth integral of $u$,
117 cnh 1.9 similarly for $H\widehat{v}$. The rigid-lid approximation sets $w=0$
118 adcroft 1.8 at the lid so that it does not move but allows a pressure to be
119     exerted on the fluid by the lid. The horizontal momentum equations and
120     vertically integrated continuity equation are be discretized in time
121     and space as follows:
122 adcroft 1.1 \begin{eqnarray}
123 adcroft 1.8 u^{n+1} + \Delta t g \partial_x \eta^{n+1}
124     & = & u^{n} + \Delta t G_u^{(n+1/2)}
125     \label{eq:discrete-time-u}
126     \\
127     v^{n+1} + \Delta t g \partial_y \eta^{n+1}
128     & = & v^{n} + \Delta t G_v^{(n+1/2)}
129     \label{eq:discrete-time-v}
130     \\
131     \partial_x H \widehat{u^{n+1}}
132     + \partial_y H \widehat{v^{n+1}} & = & 0
133     \label{eq:discrete-time-cont-rigid-lid}
134 adcroft 1.1 \end{eqnarray}
135 adcroft 1.8 As written here, terms on the LHS all involve time level $n+1$ and are
136     referred to as implicit; the implicit backward time stepping scheme is
137     being used. All other terms in the RHS are explicit in time. The
138     thermodynamic quantities are integrated forward in time in parallel
139     with the flow and will be discussed later. For the purposes of
140     describing the pressure method it suffices to say that the hydrostatic
141     pressure gradient is explicit and so can be included in the vector
142     $G$.
143    
144     Substituting the two momentum equations into the depth integrated
145 cnh 1.9 continuity equation eliminates $u^{n+1}$ and $v^{n+1}$ yielding an
146 adcroft 1.8 elliptic equation for $\eta^{n+1}$. Equations
147     \ref{eq:discrete-time-u}, \ref{eq:discrete-time-v} and
148     \ref{eq:discrete-time-cont-rigid-lid} can then be re-arranged as follows:
149     \begin{eqnarray}
150     u^{*} & = & u^{n} + \Delta t G_u^{(n+1/2)} \label{eq:ustar-rigid-lid} \\
151     v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-rigid-lid} \\
152     \partial_x \Delta t g H \partial_x \eta^{n+1}
153     + \partial_y \Delta t g H \partial_y \eta^{n+1}
154 adcroft 1.1 & = &
155 adcroft 1.8 \partial_x H \widehat{u^{*}}
156     + \partial_y H \widehat{v^{*}} \label{eq:elliptic}
157 adcroft 1.1 \\
158 adcroft 1.8 u^{n+1} & = & u^{*} - \Delta t g \partial_x \eta^{n+1} \label{eq:un+1-rigid-lid}\\
159     v^{n+1} & = & v^{*} - \Delta t g \partial_y \eta^{n+1} \label{eq:vn+1-rigid-lid}
160     \end{eqnarray}
161     Equations \ref{eq:ustar-rigid-lid} to \ref{eq:vn+1-rigid-lid}, solved
162     sequentially, represent the pressure method algorithm used in the
163     model. The essence of the pressure method lies in the fact that any
164     explicit prediction for the flow would lead to a divergence flow field
165     so a pressure field must be found that keeps the flow non-divergent
166     over each step of the integration. The particular location in time of
167     the pressure field is somewhat ambiguous; in
168     Fig.~\ref{fig:pressure-method-rigid-lid} we depicted as co-located
169     with the future flow field (time level $n+1$) but it could equally
170     have been drawn as staggered in time with the flow.
171    
172 cnh 1.9 The correspondence to the code is as follows:
173 adcroft 1.8 \begin{itemize}
174     \item
175     the prognostic phase, equations \ref{eq:ustar-rigid-lid} and \ref{eq:vstar-rigid-lid},
176     stepping forward $u^n$ and $v^n$ to $u^{*}$ and $v^{*}$ is coded in
177 edhill 1.16 \filelink{TIMESTEP()}{model-src-timestep.F}
178 adcroft 1.8 \item
179     the vertical integration, $H \widehat{u^*}$ and $H
180 cnh 1.9 \widehat{v^*}$, divergence and inversion of the elliptic operator in
181 cnh 1.15 equation \ref{eq:elliptic} is coded in
182 edhill 1.16 \filelink{SOLVE\_FOR\_PRESSURE()}{model-src-solve_for_pressure.F}
183 adcroft 1.8 \item
184     finally, the new flow field at time level $n+1$ given by equations
185 cnh 1.15 \ref{eq:un+1-rigid-lid} and \ref{eq:vn+1-rigid-lid} is calculated in
186 edhill 1.16 \filelink{CORRECTION\_STEP()}{model-src-correction_step.F}.
187 adcroft 1.8 \end{itemize}
188     The calling tree for these routines is given in
189     Fig.~\ref{fig:call-tree-pressure-method}.
190    
191    
192    
193     \paragraph{Need to discuss implicit viscosity somewhere:}
194 jmc 1.2 \begin{eqnarray}
195 adcroft 1.8 \frac{1}{\Delta t} u^{n+1} - \partial_z A_v \partial_z u^{n+1}
196     + g \partial_x \eta^{n+1} & = & \frac{1}{\Delta t} u^{n} +
197     G_u^{(n+1/2)}
198     \\
199     \frac{1}{\Delta t} v^{n+1} - \partial_z A_v \partial_z v^{n+1}
200     + g \partial_y \eta^{n+1} & = & \frac{1}{\Delta t} v^{n} + G_v^{(n+1/2)}
201 jmc 1.2 \end{eqnarray}
202 adcroft 1.1
203 jmc 1.4
204 adcroft 1.8 \section{Pressure method with implicit linear free-surface}
205     \label{sect:pressure-method-linear-backward}
206 adcroft 1.6
207 adcroft 1.8 The rigid-lid approximation filters out external gravity waves
208     subsequently modifying the dispersion relation of barotropic Rossby
209     waves. The discrete form of the elliptic equation has some zero
210     eigen-values which makes it a potentially tricky or inefficient
211     problem to solve.
212 adcroft 1.6
213 adcroft 1.8 The rigid-lid approximation can be easily replaced by a linearization
214     of the free-surface equation which can be written:
215     \begin{equation}
216     \partial_t \eta + \partial_x H \widehat{u} + \partial_y H \widehat{v} = P-E+R
217     \label{eq:linear-free-surface=P-E+R}
218     \end{equation}
219     which differs from the depth integrated continuity equation with
220     rigid-lid (\ref{eq:rigid-lid-continuity}) by the time-dependent term
221     and fresh-water source term.
222    
223     Equation \ref{eq:discrete-time-cont-rigid-lid} in the rigid-lid
224     pressure method is then replaced by the time discretization of
225     \ref{eq:linear-free-surface=P-E+R} which is:
226     \begin{equation}
227     \eta^{n+1}
228     + \Delta t \partial_x H \widehat{u^{n+1}}
229     + \Delta t \partial_y H \widehat{v^{n+1}}
230     =
231     \eta^{n}
232     + \Delta t ( P - E + R )
233     \label{eq:discrete-time-backward-free-surface}
234     \end{equation}
235     where the use of flow at time level $n+1$ makes the method implicit
236     and backward in time. The is the preferred scheme since it still
237     filters the fast unresolved wave motions by damping them. A centered
238     scheme, such as Crank-Nicholson, would alias the energy of the fast
239     modes onto slower modes of motion.
240    
241     As for the rigid-lid pressure method, equations
242     \ref{eq:discrete-time-u}, \ref{eq:discrete-time-v} and
243     \ref{eq:discrete-time-backward-free-surface} can be re-arranged as follows:
244 adcroft 1.1 \begin{eqnarray}
245 adcroft 1.8 u^{*} & = & u^{n} + \Delta t G_u^{(n+1/2)} \label{eq:ustar-backward-free-surface} \\
246     v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-backward-free-surface} \\
247     \eta^* & = & \epsilon_{fs} \left( \eta^{n} +P-E+R \right)- \Delta t
248     \partial_x H \widehat{u^{*}}
249     + \partial_y H \widehat{v^{*}}
250     \\
251     \partial_x g H \partial_x \eta^{n+1}
252     + \partial_y g H \partial_y \eta^{n+1}
253     - \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2}
254 adcroft 1.1 & = &
255 adcroft 1.8 - \frac{\eta^*}{\Delta t^2}
256     \label{eq:elliptic-backward-free-surface}
257 adcroft 1.1 \\
258 adcroft 1.8 u^{n+1} & = & u^{*} - \Delta t g \partial_x \eta^{n+1} \label{eq:un+1-backward-free-surface}\\
259     v^{n+1} & = & v^{*} - \Delta t g \partial_y \eta^{n+1} \label{eq:vn+1-backward-free-surface}
260 adcroft 1.1 \end{eqnarray}
261 adcroft 1.8 Equations~\ref{eq:ustar-backward-free-surface}
262     to~\ref{eq:vn+1-backward-free-surface}, solved sequentially, represent
263     the pressure method algorithm with a backward implicit, linearized
264     free surface. The method is still formerly a pressure method because
265     in the limit of large $\Delta t$ the rigid-lid method is
266 cnh 1.9 recovered. However, the implicit treatment of the free-surface allows
267 adcroft 1.8 the flow to be divergent and for the surface pressure/elevation to
268 cnh 1.9 respond on a finite time-scale (as opposed to instantly). To recover
269 adcroft 1.8 the rigid-lid formulation, we introduced a switch-like parameter,
270     $\epsilon_{fs}$, which selects between the free-surface and rigid-lid;
271     $\epsilon_{fs}=1$ allows the free-surface to evolve; $\epsilon_{fs}=0$
272     imposes the rigid-lid. The evolution in time and location of variables
273     is exactly as it was for the rigid-lid model so that
274     Fig.~\ref{fig:pressure-method-rigid-lid} is still
275     applicable. Similarly, the calling sequence, given in
276     Fig.~\ref{fig:call-tree-pressure-method}, is as for the
277     pressure-method.
278    
279    
280     \section{Explicit time-stepping: Adams-Bashforth}
281     \label{sect:adams-bashforth}
282    
283     In describing the the pressure method above we deferred describing the
284     time discretization of the explicit terms. We have historically used
285     the quasi-second order Adams-Bashforth method for all explicit terms
286     in both the momentum and tracer equations. This is still the default
287     mode of operation but it is now possible to use alternate schemes for
288     tracers (see section \ref{sect:tracer-advection}).
289    
290     \begin{figure}
291     \begin{center} \fbox{ \begin{minipage}{4.5in} \begin{tabbing}
292     aaa \= aaa \= aaa \= aaa \= aaa \= aaa \kill
293     FORWARD\_STEP \\
294     \> THERMODYNAMICS \\
295     \>\> CALC\_GT \\
296     \>\>\> GAD\_CALC\_RHS \` $G_\theta^n = G_\theta( u, \theta^n )$ \\
297     \>\>\> EXTERNAL\_FORCING \` $G_\theta^n = G_\theta^n + {\cal Q}$ \\
298     \>\>\> ADAMS\_BASHFORTH2 \` $G_\theta^{(n+1/2)}$ (\ref{eq:adams-bashforth2}) \\
299     \>\> TIMESTEP\_TRACER \` $\tau^*$ (\ref{eq:taustar}) \\
300     \>\> IMPLDIFF \` $\tau^{(n+1)}$ (\ref{eq:tau-n+1-implicit})
301     \end{tabbing} \end{minipage} } \end{center}
302     \caption{
303     Calling tree for the Adams-Bashforth time-stepping of temperature with
304     implicit diffusion.}
305     \label{fig:call-tree-adams-bashforth}
306     \end{figure}
307    
308     In the previous sections, we summarized an explicit scheme as:
309     \begin{equation}
310     \tau^{*} = \tau^{n} + \Delta t G_\tau^{(n+1/2)}
311     \label{eq:taustar}
312     \end{equation}
313     where $\tau$ could be any prognostic variable ($u$, $v$, $\theta$ or
314     $S$) and $\tau^*$ is an explicit estimate of $\tau^{n+1}$ and would be
315     exact if not for implicit-in-time terms. The parenthesis about $n+1/2$
316     indicates that the term is explicit and extrapolated forward in time
317     and for this we use the quasi-second order Adams-Bashforth method:
318     \begin{equation}
319     G_\tau^{(n+1/2)} = ( 3/2 + \epsilon_{AB}) G_\tau^n
320     - ( 1/2 + \epsilon_{AB}) G_\tau^{n-1}
321     \label{eq:adams-bashforth2}
322     \end{equation}
323     This is a linear extrapolation, forward in time, to
324     $t=(n+1/2+{\epsilon_{AB}})\Delta t$. An extrapolation to the mid-point
325     in time, $t=(n+1/2)\Delta t$, corresponding to $\epsilon_{AB}=0$,
326     would be second order accurate but is weakly unstable for oscillatory
327     terms. A small but finite value for $\epsilon_{AB}$ stabilizes the
328     method. Strictly speaking, damping terms such as diffusion and
329     dissipation, and fixed terms (forcing), do not need to be inside the
330     Adams-Bashforth extrapolation. However, in the current code, it is
331     simpler to include these terms and this can be justified if the flow
332     and forcing evolves smoothly. Problems can, and do, arise when forcing
333     or motions are high frequency and this corresponds to a reduced
334     stability compared to a simple forward time-stepping of such terms.
335    
336     A stability analysis for an oscillation equation should be given at this point.
337     \marginpar{AJA needs to find his notes on this...}
338    
339     A stability analysis for a relaxation equation should be given at this point.
340     \marginpar{...and for this too.}
341    
342    
343     \section{Implicit time-stepping: backward method}
344    
345     Vertical diffusion and viscosity can be treated implicitly in time
346     using the backward method which is an intrinsic scheme. For tracers,
347 cnh 1.9 the time discretized equation is:
348 adcroft 1.8 \begin{equation}
349     \tau^{n+1} - \Delta t \partial_r \kappa_v \partial_r \tau^{n+1} =
350     \tau^{n} + \Delta t G_\tau^{(n+1/2)}
351     \label{eq:implicit-diffusion}
352     \end{equation}
353     where $G_\tau^{(n+1/2)}$ is the remaining explicit terms extrapolated
354     using the Adams-Bashforth method as described above. Equation
355     \ref{eq:implicit-diffusion} can be split split into:
356 adcroft 1.1 \begin{eqnarray}
357 adcroft 1.8 \tau^* & = & \tau^{n} + \Delta t G_\tau^{(n+1/2)}
358     \label{eq:taustar-implicit} \\
359     \tau^{n+1} & = & {\cal L}_\tau^{-1} ( \tau^* )
360     \label{eq:tau-n+1-implicit}
361 adcroft 1.1 \end{eqnarray}
362 adcroft 1.8 where ${\cal L}_\tau^{-1}$ is the inverse of the operator
363 adcroft 1.6 \begin{equation}
364 adcroft 1.8 {\cal L} = \left[ 1 + \Delta t \partial_r \kappa_v \partial_r \right]
365 adcroft 1.6 \end{equation}
366 adcroft 1.8 Equation \ref{eq:taustar-implicit} looks exactly as \ref{eq:taustar}
367     while \ref{eq:tau-n+1-implicit} involves an operator or matrix
368     inversion. By re-arranging \ref{eq:implicit-diffusion} in this way we
369     have cast the method as an explicit prediction step and an implicit
370     step allowing the latter to be inserted into the over all algorithm
371     with minimal interference.
372    
373     Fig.~\ref{fig:call-tree-adams-bashforth} shows the calling sequence for
374     stepping forward a tracer variable such as temperature.
375    
376     In order to fit within the pressure method, the implicit viscosity
377     must not alter the barotropic flow. In other words, it can on ly
378     redistribute momentum in the vertical. The upshot of this is that
379     although vertical viscosity may be backward implicit and
380     unconditionally stable, no-slip boundary conditions may not be made
381     implicit and are thus cast as a an explicit drag term.
382    
383     \section{Synchronous time-stepping: variables co-located in time}
384     \label{sect:adams-bashforth-sync}
385    
386     \begin{figure}
387     \begin{center}
388     \resizebox{5.0in}{!}{\includegraphics{part2/adams-bashforth-sync.eps}}
389     \end{center}
390     \caption{
391     A schematic of the explicit Adams-Bashforth and implicit time-stepping
392     phases of the algorithm. All prognostic variables are co-located in
393 cnh 1.9 time. Explicit tendencies are evaluated at time level $n$ as a
394 adcroft 1.8 function of the state at that time level (dotted arrow). The explicit
395 cnh 1.9 tendency from the previous time level, $n-1$, is used to extrapolate
396     tendencies to $n+1/2$ (dashed arrow). This extrapolated tendency
397 adcroft 1.8 allows variables to be stably integrated forward-in-time to render an
398     estimate ($*$-variables) at the $n+1$ time level (solid
399     arc-arrow). The operator ${\cal L}$ formed from implicit-in-time terms
400     is solved to yield the state variables at time level $n+1$. }
401     \label{fig:adams-bashforth-sync}
402     \end{figure}
403    
404     \begin{figure}
405     \begin{center} \fbox{ \begin{minipage}{4.5in} \begin{tabbing}
406     aaa \= aaa \= aaa \= aaa \= aaa \= aaa \kill
407     FORWARD\_STEP \\
408     \> THERMODYNAMICS \\
409     \>\> CALC\_GT \\
410     \>\>\> GAD\_CALC\_RHS \` $G_\theta^n = G_\theta( u, \theta^n )$ (\ref{eq:Gt-n-sync})\\
411     \>\>\> EXTERNAL\_FORCING \` $G_\theta^n = G_\theta^n + {\cal Q}$ \\
412     \>\>\> ADAMS\_BASHFORTH2 \` $G_\theta^{(n+1/2)}$ (\ref{eq:Gt-n+5-sync}) \\
413     \>\> TIMESTEP\_TRACER \` $\tau^*$ (\ref{eq:tstar-sync}) \\
414     \>\> IMPLDIFF \` $\tau^{(n+1)}$ (\ref{eq:t-n+1-sync}) \\
415     \> DYNAMICS \\
416     \>\> CALC\_PHI\_HYD \` $\phi_{hyd}^n$ (\ref{eq:phi-hyd-sync}) \\
417     \>\> MOM\_FLUXFORM or MOM\_VECINV \` $G_{\vec{\bf v}}^n$ (\ref{eq:Gv-n-sync})\\
418     \>\> TIMESTEP \` $\vec{\bf v}^*$ (\ref{eq:Gv-n+5-sync}, \ref{eq:vstar-sync}) \\
419     \>\> IMPLDIFF \` $\vec{\bf v}^{**}$ (\ref{eq:vstarstar-sync}) \\
420     \> SOLVE\_FOR\_PRESSURE \\
421     \>\> CALC\_DIV\_GHAT \` $\eta^*$ (\ref{eq:nstar-sync}) \\
422     \>\> CG2D \` $\eta^{n+1}$ (\ref{eq:elliptic-sync}) \\
423     \> THE\_CORRECTION\_STEP \\
424     \>\> CALC\_GRAD\_PHI\_SURF \` $\nabla \eta^{n+1}$ \\
425     \>\> CORRECTION\_STEP \` $u^{n+1}$,$v^{n+1}$ (\ref{eq:v-n+1-sync})
426     \end{tabbing} \end{minipage} } \end{center}
427     \caption{
428     Calling tree for the overall synchronous algorithm using
429     Adams-Bashforth time-stepping.}
430     \label{fig:call-tree-adams-bashforth-sync}
431     \end{figure}
432    
433 cnh 1.9 The Adams-Bashforth extrapolation of explicit tendencies fits neatly
434 adcroft 1.8 into the pressure method algorithm when all state variables are
435 cnh 1.9 co-located in time. Fig.~\ref{fig:adams-bashforth-sync} illustrates
436 adcroft 1.8 the location of variables in time and the evolution of the algorithm
437     with time. The algorithm can be represented by the sequential solution
438     of the follow equations:
439     \begin{eqnarray}
440     G_{\theta,S}^{n} & = & G_{\theta,S} ( u^n, \theta^n, S^n )
441     \label{eq:Gt-n-sync} \\
442     G_{\theta,S}^{(n+1/2)} & = & (3/2+\epsilon_{AB}) G_{\theta,S}^{n}-(1/2+\epsilon_{AB}) G_{\theta,S}^{n-1}
443     \label{eq:Gt-n+5-sync} \\
444     (\theta^*,S^*) & = & (\theta^{n},S^{n}) + \Delta t G_{\theta,S}^{(n+1/2)}
445     \label{eq:tstar-sync} \\
446     (\theta^{n+1},S^{n+1}) & = & {\cal L}^{-1}_{\theta,S} (\theta^*,S^*)
447     \label{eq:t-n+1-sync} \\
448     \phi^n_{hyd} & = & \int b(\theta^n,S^n) dr
449     \label{eq:phi-hyd-sync} \\
450     \vec{\bf G}_{\vec{\bf v}}^{n} & = & \vec{\bf G}_{\vec{\bf v}} ( \vec{\bf v}^n, \phi^n_{hyd} )
451     \label{eq:Gv-n-sync} \\
452     \vec{\bf G}_{\vec{\bf v}}^{(n+1/2)} & = & (3/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n} - (1/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n-1}
453     \label{eq:Gv-n+5-sync} \\
454     \vec{\bf v}^{*} & = & \vec{\bf v}^{n} + \Delta t \vec{\bf G}_{\vec{\bf v}}^{(n+1/2)}
455     \label{eq:vstar-sync} \\
456     \vec{\bf v}^{**} & = & {\cal L}_{\vec{\bf v}}^{-1} ( \vec{\bf v}^* )
457     \label{eq:vstarstar-sync} \\
458     \eta^* & = & \epsilon_{fs} \left( \eta^{n} +P-E+R \right)- \Delta t
459     \nabla \cdot H \widehat{ \vec{\bf v}^{**} }
460     \label{eq:nstar-sync} \\
461     \nabla \cdot g H \nabla \eta^{n+1} - \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2}
462     & = & - \frac{\eta^*}{\Delta t^2}
463     \label{eq:elliptic-sync} \\
464     \vec{\bf v}^{n+1} & = & \vec{\bf v}^{*} - \Delta t g \nabla \eta^{n+1}
465     \label{eq:v-n+1-sync}
466     \end{eqnarray}
467     Fig.~\ref{fig:adams-bashforth-sync} illustrates the location of
468     variables in time and evolution of the algorithm with time. The
469 cnh 1.9 Adams-Bashforth extrapolation of the tracer tendencies is illustrated
470     by the dashed arrow, the prediction at $n+1$ is indicated by the
471 adcroft 1.8 solid arc. Inversion of the implicit terms, ${\cal
472     L}^{-1}_{\theta,S}$, then yields the new tracer fields at $n+1$. All
473     these operations are carried out in subroutine {\em THERMODYNAMICS} an
474     subsidiaries, which correspond to equations \ref{eq:Gt-n-sync} to
475     \ref{eq:t-n+1-sync}.
476     Similarly illustrated is the Adams-Bashforth extrapolation of
477     accelerations, stepping forward and solving of implicit viscosity and
478     surface pressure gradient terms, corresponding to equations
479     \ref{eq:Gv-n-sync} to \ref{eq:v-n+1-sync}.
480     These operations are carried out in subroutines {\em DYNAMCIS}, {\em
481     SOLVE\_FOR\_PRESSURE} and {\em THE\_CORRECTION\_STEP}. This, then,
482     represents an entire algorithm for stepping forward the model one
483     time-step. The corresponding calling tree is given in
484     \ref{fig:call-tree-adams-bashforth-sync}.
485    
486     \section{Staggered baroclinic time-stepping}
487     \label{sect:adams-bashforth-staggered}
488    
489     \begin{figure}
490     \begin{center}
491     \resizebox{5.5in}{!}{\includegraphics{part2/adams-bashforth-staggered.eps}}
492     \end{center}
493     \caption{
494     A schematic of the explicit Adams-Bashforth and implicit time-stepping
495     phases of the algorithm but with staggering in time of thermodynamic
496 cnh 1.9 variables with the flow. Explicit thermodynamics tendencies are
497 adcroft 1.8 evaluated at time level $n-1/2$ as a function of the thermodynamics
498     state at that time level $n$ and flow at time $n$ (dotted arrow). The
499 cnh 1.9 explicit tendency from the previous time level, $n-3/2$, is used to
500     extrapolate tendencies to $n$ (dashed arrow). This extrapolated
501     tendency allows thermo-dynamics variables to be stably integrated
502 adcroft 1.8 forward-in-time to render an estimate ($*$-variables) at the $n+1/2$
503     time level (solid arc-arrow). The implicit-in-time operator ${\cal
504     L_{\theta,S}}$ is solved to yield the thermodynamic variables at time
505     level $n+1/2$. These are then used to calculate the hydrostatic
506     pressure/geo-potential, $\phi_{hyd}$ (vertical arrows). The
507     hydrostatic pressure gradient is evaluated directly an time level
508     $n+1/2$ in stepping forward the flow variables from $n$ to $n+1$
509     (solid arc-arrow). }
510     \label{fig:adams-bashforth-staggered}
511     \end{figure}
512    
513     For well stratified problems, internal gravity waves may be the
514     limiting process for determining a stable time-step. In the
515     circumstance, it is more efficient to stagger in time the
516     thermodynamic variables with the flow
517     variables. Fig.~\ref{fig:adams-bashforth-staggered} illustrates the
518 cnh 1.9 staggering and algorithm. The key difference between this and
519 adcroft 1.8 Fig.~\ref{fig:adams-bashforth-sync} is that the new thermodynamics
520     fields are used to compute the hydrostatic pressure at time level
521     $n+1/2$. The essentially allows the gravity wave terms to leap-frog in
522     time giving second order accuracy and more stability.
523    
524     The essential change in the staggered algorithm is the calculation of
525     hydrostatic pressure which, in the context of the synchronous
526     algorithm involves replacing equation \ref{eq:phi-hyd-sync} with
527     \begin{displaymath}
528     \phi_{hyd}^n = \int b(\theta^{n+1},S^{n+1}) dr
529     \end{displaymath}
530     but the pressure gradient must also be taken out of the
531 cnh 1.9 Adams-Bashforth extrapolation. Also, retaining the integer time-levels,
532 adcroft 1.8 $n$ and $n+1$, does not give a user the sense of where variables are
533     located in time. Instead, we re-write the entire algorithm,
534     \ref{eq:Gt-n-sync} to \ref{eq:v-n+1-sync}, annotating the
535     position in time of variables appropriately:
536     \begin{eqnarray}
537     G_{\theta,S}^{n-1/2} & = & G_{\theta,S} ( u^n, \theta^{n-1/2}, S^{n-1/2} )
538     \label{eq:Gt-n-staggered} \\
539     G_{\theta,S}^{(n)} & = & (3/2+\epsilon_{AB}) G_{\theta,S}^{n-1/2}-(1/2+\epsilon_{AB}) G_{\theta,S}^{n-3/2}
540     \label{eq:Gt-n+5-staggered} \\
541     (\theta^*,S^*) & = & (\theta^{n},S^{n}) + \Delta t G_{\theta,S}^{(n)}
542     \label{eq:tstar-staggered} \\
543     (\theta^{n+1/2},S^{n+1/2}) & = & {\cal L}^{-1}_{\theta,S} (\theta^*,S^*)
544     \label{eq:t-n+1-staggered} \\
545     \phi^{n+1/2}_{hyd} & = & \int b(\theta^{n+1/2},S^{n+1/2}) dr
546     \label{eq:phi-hyd-staggered} \\
547     \vec{\bf G}_{\vec{\bf v}}^{n} & = & \vec{\bf G}_{\vec{\bf v}} ( \vec{\bf v}^n )
548     \label{eq:Gv-n-staggered} \\
549     \vec{\bf G}_{\vec{\bf v}}^{(n+1/2)} & = & (3/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n} - (1/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n-1}
550     \label{eq:Gv-n+5-staggered} \\
551     \vec{\bf v}^{*} & = & \vec{\bf v}^{n} + \Delta t \left( \vec{\bf G}_{\vec{\bf v}}^{(n+1/2)} - \nabla \phi_{hyd}^{n+1/2} \right)
552     \label{eq:vstar-staggered} \\
553     \vec{\bf v}^{**} & = & {\cal L}_{\vec{\bf v}}^{-1} ( \vec{\bf v}^* )
554     \label{eq:vstarstar-staggered} \\
555     \eta^* & = & \epsilon_{fs} \left( \eta^{n} +P-E+R \right)- \Delta t
556     \nabla \cdot H \widehat{ \vec{\bf v}^{**} }
557     \label{eq:nstar-staggered} \\
558     \nabla \cdot g H \nabla \eta^{n+1} - \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2}
559     & = & - \frac{\eta^*}{\Delta t^2}
560     \label{eq:elliptic-staggered} \\
561     \vec{\bf v}^{n+1} & = & \vec{\bf v}^{*} - \Delta t g \nabla \eta^{n+1}
562     \label{eq:v-n+1-staggered}
563     \end{eqnarray}
564     The calling sequence is unchanged from
565     Fig.~\ref{fig:call-tree-adams-bashforth-sync}. The staggered algorithm
566     is activated with the run-time flag {\bf staggerTimeStep=.TRUE.} in
567     {\em PARM01} of {\em data}.
568 adcroft 1.7
569 adcroft 1.8 The only difficulty with this approach is apparent in equation
570 adcroft 1.11 \ref{eq:Gt-n-staggered} and illustrated by the dotted arrow
571 adcroft 1.8 connecting $u,v^n$ with $G_\theta^{n-1/2}$. The flow used to advect
572     tracers around is not naturally located in time. This could be avoided
573     by applying the Adams-Bashforth extrapolation to the tracer field
574 adcroft 1.14 itself and advecting that around but this approach is not yet
575     available. We're not aware of any detrimental effect of this
576     feature. The difficulty lies mainly in interpretation of what
577     time-level variables and terms correspond to.
578 adcroft 1.7
579    
580 adcroft 1.8 \section{Non-hydrostatic formulation}
581     \label{sect:non-hydrostatic}
582 adcroft 1.7
583 adcroft 1.14 The non-hydrostatic formulation re-introduces the full vertical
584     momentum equation and requires the solution of a 3-D elliptic
585     equations for non-hydrostatic pressure perturbation. We still
586     intergrate vertically for the hydrostatic pressure and solve a 2-D
587     elliptic equation for the surface pressure/elevation for this reduces
588     the amount of work needed to solve for the non-hydrostatic pressure.
589 adcroft 1.7
590 adcroft 1.14 The momentum equations are discretized in time as follows:
591     \begin{eqnarray}
592     \frac{1}{\Delta t} u^{n+1} + g \partial_x \eta^{n+1} + \partial_x \phi_{nh}^{n+1}
593     & = & \frac{1}{\Delta t} u^{n} + G_u^{(n+1/2)} \label{eq:discrete-time-u-nh} \\
594     \frac{1}{\Delta t} v^{n+1} + g \partial_y \eta^{n+1} + \partial_y \phi_{nh}^{n+1}
595     & = & \frac{1}{\Delta t} v^{n} + G_v^{(n+1/2)} \label{eq:discrete-time-v-nh} \\
596     \frac{1}{\Delta t} w^{n+1} + \partial_r \phi_{nh}^{n+1}
597     & = & \frac{1}{\Delta t} w^{n} + G_w^{(n+1/2)} \label{eq:discrete-time-w-nh} \\
598     \end{eqnarray}
599     which must satisfy the discrete-in-time depth integrated continuity,
600     equation~\ref{eq:discrete-time-backward-free-surface} and the local continuity equation
601     \begin{equation}
602     \partial_x u^{n+1} + \partial_y v^{n+1} + \partial_r w^{n+1} = 0
603     \label{eq:non-divergence-nh}
604     \end{equation}
605     As before, the explicit predictions for momentum are consolidated as:
606     \begin{eqnarray*}
607     u^* & = & u^n + \Delta t G_u^{(n+1/2)} \\
608     v^* & = & v^n + \Delta t G_v^{(n+1/2)} \\
609     w^* & = & w^n + \Delta t G_w^{(n+1/2)}
610     \end{eqnarray*}
611     but this time we introduce an intermediate step by splitting the
612     tendancy of the flow as follows:
613     \begin{eqnarray}
614     u^{n+1} = u^{**} - \Delta t \partial_x \phi_{nh}^{n+1}
615     & &
616     u^{**} = u^{*} - \Delta t g \partial_x \eta^{n+1} \\
617     v^{n+1} = v^{**} - \Delta t \partial_y \phi_{nh}^{n+1}
618     & &
619     v^{**} = v^{*} - \Delta t g \partial_y \eta^{n+1}
620     \end{eqnarray}
621     Substituting into the depth integrated continuity
622     (equation~\ref{eq:discrete-time-backward-free-surface}) gives
623     \begin{equation}
624     \partial_x H \partial_x \left( g \eta^{n+1} + \widehat{\phi}_{nh}^{n+1} \right)
625     +
626     \partial_y H \partial_y \left( g \eta^{n+1} + \widehat{\phi}_{nh}^{n+1} \right)
627     - \frac{\epsilon_{fs}\eta^*}{\Delta t^2}
628     = - \frac{\eta^*}{\Delta t^2}
629     \end{equation}
630     which is approximated by equation
631     \ref{eq:elliptic-backward-free-surface} on the basis that i)
632     $\phi_{nh}^{n+1}$ is not yet known and ii) $\nabla \widehat{\phi}_{nh}
633     << g \nabla \eta$. If \ref{eq:elliptic-backward-free-surface} is
634     solved accurately then the implication is that $\widehat{\phi}_{nh}
635     \approx 0$ so that thet non-hydrostatic pressure field does not drive
636     barotropic motion.
637    
638     The flow must satisfy non-divergence
639     (equation~\ref{eq:non-divergence-nh}) locally, as well as depth
640     integrated, and this constraint is used to form a 3-D elliptic
641     equations for $\phi_{nh}^{n+1}$:
642     \begin{equation}
643     \partial_{xx} \phi_{nh}^{n+1} + \partial_{yy} \phi_{nh}^{n+1} +
644     \partial_{rr} \phi_{nh}^{n+1} =
645     \partial_x u^{**} + \partial_y v^{**} + \partial_r w^{*}
646     \end{equation}
647    
648     The entire algorithm can be summarized as the sequential solution of
649     the following equations:
650     \begin{eqnarray}
651     u^{*} & = & u^{n} + \Delta t G_u^{(n+1/2)} \label{eq:ustar-nh} \\
652     v^{*} & = & v^{n} + \Delta t G_v^{(n+1/2)} \label{eq:vstar-nh} \\
653     w^{*} & = & w^{n} + \Delta t G_w^{(n+1/2)} \label{eq:wstar-nh} \\
654     \eta^* & = & \epsilon_{fs} \left( \eta^{n} +P-E+R \right)- \Delta t
655     \partial_x H \widehat{u^{*}}
656     + \partial_y H \widehat{v^{*}}
657     \\
658     \partial_x g H \partial_x \eta^{n+1}
659     + \partial_y g H \partial_y \eta^{n+1}
660     - \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2}
661     & = &
662     - \frac{\eta^*}{\Delta t^2}
663     \label{eq:elliptic-nh}
664     \\
665     u^{**} & = & u^{*} - \Delta t g \partial_x \eta^{n+1} \label{eq:unx-nh}\\
666     v^{**} & = & v^{*} - \Delta t g \partial_y \eta^{n+1} \label{eq:vnx-nh}\\
667     \partial_{xx} \phi_{nh}^{n+1} + \partial_{yy} \phi_{nh}^{n+1} +
668     \partial_{rr} \phi_{nh}^{n+1} & = &
669     \partial_x u^{**} + \partial_y v^{**} + \partial_r w^{*} \\
670     u^{n+1} & = & u^{**} - \Delta t \partial_x \phi_{nh}^{n+1} \label{eq:un+1-nh}\\
671     v^{n+1} & = & v^{**} - \Delta t \partial_y \phi_{nh}^{n+1} \label{eq:vn+1-nh}\\
672     \partial_r w^{n+1} & = & - \partial_x u^{n+1} - \partial_y v^{n+1}
673     \end{eqnarray}
674     where the last equation is solved by vertically integrating for
675     $w^{n+1}$.
676 adcroft 1.7
677 adcroft 1.1
678    
679 adcroft 1.8 \section{Variants on the Free Surface}
680 adcroft 1.1
681 cnh 1.9 We now describe the various formulations of the free-surface that
682 adcroft 1.8 include non-linear forms, implicit in time using Crank-Nicholson,
683     explicit and [one day] split-explicit. First, we'll reiterate the
684     underlying algorithm but this time using the notation consistent with
685     the more general vertical coordinate $r$. The elliptic equation for
686 cnh 1.9 free-surface coordinate (units of $r$), corresponding to
687 adcroft 1.8 \ref{eq:discrete-time-backward-free-surface}, and
688     assuming no non-hydrostatic effects ($\epsilon_{nh} = 0$) is:
689 jmc 1.2 \begin{eqnarray}
690 adcroft 1.1 \epsilon_{fs} {\eta}^{n+1} -
691 adcroft 1.8 {\bf \nabla}_h \cdot \Delta t^2 (R_o-R_{fixed}) {\bf \nabla}_h b_s
692     {\eta}^{n+1} = {\eta}^*
693 jmc 1.4 \label{eq-solve2D}
694 jmc 1.2 \end{eqnarray}
695 adcroft 1.1 where
696 jmc 1.2 \begin{eqnarray}
697 adcroft 1.1 {\eta}^* = \epsilon_{fs} \: {\eta}^{n} -
698 jmc 1.5 \Delta t {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o} \vec{\bf v}^* dr
699 adcroft 1.1 \: + \: \epsilon_{fw} \Delta_t (P-E)^{n}
700 jmc 1.4 \label{eq-solve2D_rhs}
701 jmc 1.2 \end{eqnarray}
702 adcroft 1.1
703 adcroft 1.7 \fbox{ \begin{minipage}{4.75in}
704     {\em S/R SOLVE\_FOR\_PRESSURE} ({\em solve\_for\_pressure.F})
705    
706     $u^*$: {\bf GuNm1} ({\em DYNVARS.h})
707    
708     $v^*$: {\bf GvNm1} ({\em DYNVARS.h})
709    
710     $\eta^*$: {\bf cg2d\_b} (\em SOLVE\_FOR\_PRESSURE.h)
711    
712     $\eta^{n+1}$: {\bf etaN} (\em DYNVARS.h)
713    
714     \end{minipage} }
715    
716    
717 adcroft 1.6 Once ${\eta}^{n+1}$ has been found, substituting into
718 adcroft 1.12 \ref{eq:discrete-time-u,eq:discrete-time-v} yields $\vec{\bf v}^{n+1}$ if the model is
719 adcroft 1.6 hydrostatic ($\epsilon_{nh}=0$):
720 adcroft 1.1 $$
721     \vec{\bf v}^{n+1} = \vec{\bf v}^{*}
722 jmc 1.3 - \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}
723 adcroft 1.1 $$
724    
725     This is known as the correction step. However, when the model is
726     non-hydrostatic ($\epsilon_{nh}=1$) we need an additional step and an
727 adcroft 1.6 additional equation for $\phi'_{nh}$. This is obtained by substituting
728 adcroft 1.14 \ref{eq:discrete-time-u-nh}, \ref{eq:discrete-time-v-nh} and \ref{eq:discrete-time-w-nh}
729 adcroft 1.12 into continuity:
730 adcroft 1.1 \begin{equation}
731 jmc 1.3 \left[ {\bf \nabla}_h^2 + \partial_{rr} \right] {\phi'_{nh}}^{n+1}
732 adcroft 1.1 = \frac{1}{\Delta t} \left(
733 jmc 1.3 {\bf \nabla}_h \cdot \vec{\bf v}^{**} + \partial_r \dot{r}^* \right)
734 adcroft 1.1 \end{equation}
735     where
736     \begin{displaymath}
737 jmc 1.3 \vec{\bf v}^{**} = \vec{\bf v}^* - \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}
738 adcroft 1.1 \end{displaymath}
739     Note that $\eta^{n+1}$ is also used to update the second RHS term
740     $\partial_r \dot{r}^* $ since
741     the vertical velocity at the surface ($\dot{r}_{surf}$)
742     is evaluated as $(\eta^{n+1} - \eta^n) / \Delta t$.
743    
744     Finally, the horizontal velocities at the new time level are found by:
745     \begin{equation}
746     \vec{\bf v}^{n+1} = \vec{\bf v}^{**}
747 jmc 1.3 - \epsilon_{nh} \Delta t {\bf \nabla}_h {\phi'_{nh}}^{n+1}
748 adcroft 1.1 \end{equation}
749     and the vertical velocity is found by integrating the continuity
750 adcroft 1.6 equation vertically. Note that, for the convenience of the restart
751     procedure, the vertical integration of the continuity equation has
752     been moved to the beginning of the time step (instead of at the end),
753 adcroft 1.1 without any consequence on the solution.
754    
755 adcroft 1.7 \fbox{ \begin{minipage}{4.75in}
756     {\em S/R CORRECTION\_STEP} ({\em correction\_step.F})
757    
758     $\eta^{n+1}$: {\bf etaN} (\em DYNVARS.h)
759    
760     $\phi_{nh}^{n+1}$: {\bf phi\_nh} (\em DYNVARS.h)
761    
762     $u^*$: {\bf GuNm1} ({\em DYNVARS.h})
763    
764     $v^*$: {\bf GvNm1} ({\em DYNVARS.h})
765    
766     $u^{n+1}$: {\bf uVel} ({\em DYNVARS.h})
767    
768     $v^{n+1}$: {\bf vVel} ({\em DYNVARS.h})
769    
770     \end{minipage} }
771    
772    
773    
774 adcroft 1.6 Regarding the implementation of the surface pressure solver, all
775     computation are done within the routine {\it SOLVE\_FOR\_PRESSURE} and
776     its dependent calls. The standard method to solve the 2D elliptic
777     problem (\ref{eq-solve2D}) uses the conjugate gradient method (routine
778     {\it CG2D}); the solver matrix and conjugate gradient operator are
779     only function of the discretized domain and are therefore evaluated
780     separately, before the time iteration loop, within {\it INI\_CG2D}.
781     The computation of the RHS $\eta^*$ is partly done in {\it
782     CALC\_DIV\_GHAT} and in {\it SOLVE\_FOR\_PRESSURE}.
783    
784     The same method is applied for the non hydrostatic part, using a
785     conjugate gradient 3D solver ({\it CG3D}) that is initialized in {\it
786     INI\_CG3D}. The RHS terms of 2D and 3D problems are computed together
787     at the same point in the code.
788 adcroft 1.7
789 adcroft 1.6
790 adcroft 1.1
791     \subsection{Crank-Nickelson barotropic time stepping}
792    
793 adcroft 1.6 The full implicit time stepping described previously is
794     unconditionally stable but damps the fast gravity waves, resulting in
795     a loss of potential energy. The modification presented now allows one
796     to combine an implicit part ($\beta,\gamma$) and an explicit part
797     ($1-\beta,1-\gamma$) for the surface pressure gradient ($\beta$) and
798     for the barotropic flow divergence ($\gamma$).
799 adcroft 1.1 \\
800     For instance, $\beta=\gamma=1$ is the previous fully implicit scheme;
801     $\beta=\gamma=1/2$ is the non damping (energy conserving), unconditionally
802     stable, Crank-Nickelson scheme; $(\beta,\gamma)=(1,0)$ or $=(0,1)$
803     corresponds to the forward - backward scheme that conserves energy but is
804     only stable for small time steps.\\
805     In the code, $\beta,\gamma$ are defined as parameters, respectively
806     {\it implicSurfPress}, {\it implicDiv2DFlow}. They are read from
807     the main data file "{\it data}" and are set by default to 1,1.
808    
809 adcroft 1.12 Equations \ref{eq:ustar-backward-free-surface} --
810     \ref{eq:vn+1-backward-free-surface} are modified as follows:
811 adcroft 1.1 $$
812     \frac{ \vec{\bf v}^{n+1} }{ \Delta t }
813 jmc 1.3 + {\bf \nabla}_h b_s [ \beta {\eta}^{n+1} + (1-\beta) {\eta}^{n} ]
814     + \epsilon_{nh} {\bf \nabla}_h {\phi'_{nh}}^{n+1}
815 adcroft 1.1 = \frac{ \vec{\bf v}^* }{ \Delta t }
816     $$
817     $$
818     \epsilon_{fs} \frac{ {\eta}^{n+1} - {\eta}^{n} }{ \Delta t}
819 jmc 1.5 + {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o}
820 adcroft 1.1 [ \gamma \vec{\bf v}^{n+1} + (1-\gamma) \vec{\bf v}^{n}] dr
821     = \epsilon_{fw} (P-E)
822     $$
823     where:
824     \begin{eqnarray*}
825     \vec{\bf v}^* & = &
826     \vec{\bf v} ^{n} + \Delta t \vec{\bf G}_{\vec{\bf v}} ^{(n+1/2)}
827 jmc 1.3 + (\beta-1) \Delta t {\bf \nabla}_h b_s {\eta}^{n}
828     + \Delta t {\bf \nabla}_h {\phi'_{hyd}}^{(n+1/2)}
829 adcroft 1.1 \\
830     {\eta}^* & = &
831     \epsilon_{fs} {\eta}^{n} + \epsilon_{fw} \Delta t (P-E)
832 jmc 1.5 - \Delta t {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o}
833 adcroft 1.1 [ \gamma \vec{\bf v}^* + (1-\gamma) \vec{\bf v}^{n}] dr
834     \end{eqnarray*}
835     \\
836 adcroft 1.6 In the hydrostatic case ($\epsilon_{nh}=0$), allowing us to find
837     ${\eta}^{n+1}$, thus:
838 adcroft 1.1 $$
839     \epsilon_{fs} {\eta}^{n+1} -
840 jmc 1.5 {\bf \nabla}_h \cdot \beta\gamma \Delta t^2 b_s (R_o - R_{fixed})
841 jmc 1.3 {\bf \nabla}_h {\eta}^{n+1}
842 adcroft 1.1 = {\eta}^*
843     $$
844     and then to compute (correction step):
845     $$
846     \vec{\bf v}^{n+1} = \vec{\bf v}^{*}
847 jmc 1.3 - \beta \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}
848 adcroft 1.1 $$
849    
850     The non-hydrostatic part is solved as described previously.
851 adcroft 1.6
852     Note that:
853     \begin{enumerate}
854     \item The non-hydrostatic part of the code has not yet been
855     updated, so that this option cannot be used with $(\beta,\gamma) \neq (1,1)$.
856     \item The stability criteria with Crank-Nickelson time stepping
857     for the pure linear gravity wave problem in cartesian coordinates is:
858     \begin{itemize}
859     \item $\beta + \gamma < 1$ : unstable
860     \item $\beta \geq 1/2$ and $ \gamma \geq 1/2$ : stable
861     \item $\beta + \gamma \geq 1$ : stable if
862 adcroft 1.1 $$
863     c_{max}^2 (\beta - 1/2)(\gamma - 1/2) + 1 \geq 0
864     $$
865     $$
866     \mbox{with }~
867     %c^2 = 2 g H {\Delta t}^2
868     %(\frac{1-cos 2 \pi / k}{\Delta x^2}
869     %+\frac{1-cos 2 \pi / l}{\Delta y^2})
870     %$$
871     %Practically, the most stringent condition is obtained with $k=l=2$ :
872     %$$
873     c_{max} = 2 \Delta t \: \sqrt{g H} \:
874     \sqrt{ \frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} }
875     $$
876 adcroft 1.6 \end{itemize}
877     \end{enumerate}
878    

  ViewVC Help
Powered by ViewVC 1.1.22