--- manual/s_algorithm/text/spatial-discrete.tex 2001/08/09 20:45:27 1.5 +++ manual/s_algorithm/text/spatial-discrete.tex 2001/09/25 20:13:42 1.6 @@ -1,4 +1,4 @@ -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_algorithm/text/spatial-discrete.tex,v 1.5 2001/08/09 20:45:27 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_algorithm/text/spatial-discrete.tex,v 1.6 2001/09/25 20:13:42 adcroft Exp $ % $Name: $ \section{Spatial discretization of the dynamical equations} @@ -454,9 +454,9 @@ The core algorithm is based on the ``C grid'' discretization of the continuity equation which can be summarized as: \begin{eqnarray} -\partial_t u + \frac{1}{\Delta x_c} \delta_i \left. \frac{ \partial \Phi}{\partial r}\right|_{s} \eta + \frac{\epsilon_{nh}}{\Delta x_c} \delta_i \Phi_{nh}' & = & G_u - \frac{1}{\Delta x_c} \delta_i \Phi_h' \\ -\partial_t v + \frac{1}{\Delta y_c} \delta_j \left. \frac{ \partial \Phi}{\partial r}\right|_{s} \eta + \frac{\epsilon_{nh}}{\Delta y_c} \delta_j \Phi_{nh}' & = & G_v - \frac{1}{\Delta y_c} \delta_j \Phi_h' \\ -\epsilon_{nh} \left( \partial_t w + \frac{1}{\Delta r_c} \delta_k \Phi_{nh}' \right) & = & \epsilon_{nh} G_w + \overline{b}^k - \frac{1}{\Delta r_c} \delta_k \Phi_{h}' \\ +\partial_t u + \frac{1}{\Delta x_c} \delta_i \left. \frac{ \partial \Phi}{\partial r}\right|_{s} \eta + \frac{\epsilon_{nh}}{\Delta x_c} \delta_i \Phi_{nh}' & = & G_u - \frac{1}{\Delta x_c} \delta_i \Phi_h' \label{eq:discrete-momu} \\ +\partial_t v + \frac{1}{\Delta y_c} \delta_j \left. \frac{ \partial \Phi}{\partial r}\right|_{s} \eta + \frac{\epsilon_{nh}}{\Delta y_c} \delta_j \Phi_{nh}' & = & G_v - \frac{1}{\Delta y_c} \delta_j \Phi_h' \label{eq:discrete-momv} \\ +\epsilon_{nh} \left( \partial_t w + \frac{1}{\Delta r_c} \delta_k \Phi_{nh}' \right) & = & \epsilon_{nh} G_w + \overline{b}^k - \frac{1}{\Delta r_c} \delta_k \Phi_{h}' \label{eq:discrete-momw} \\ \delta_i \Delta y_g \Delta r_f h_w u + \delta_j \Delta x_g \Delta r_f h_s v + \delta_k {\cal A}_c w & = & {\cal A}_c \delta_k (P-E)_{r=0} @@ -479,8 +479,9 @@ The last equation, the discrete continuity equation, can be summed in the vertical to yeild the free-surface equation: \begin{equation} -{\cal A}_c \partial_t \eta + \delta_i \sum_k \Delta y_g \Delta r_f h_w u + \delta_j \sum_k \Delta x_g \Delta r_f h_s v = -{\cal A}_c(P-E)_{r=0} +{\cal A}_c \partial_t \eta + \delta_i \sum_k \Delta y_g \Delta r_f h_w +u + \delta_j \sum_k \Delta x_g \Delta r_f h_s v = {\cal +A}_c(P-E)_{r=0} \label{eq:discrete-freesurface} \end{equation} The source term $P-E$ on the rhs of continuity accounts for the local addition of volume due to excess precipitation and run-off over @@ -500,12 +501,14 @@ \begin{equation} \epsilon_{nh} \partial_t w + g \overline{\rho'}^k + \frac{1}{\Delta z} \delta_k \Phi_h' = \ldots +\label{eq:discrete_hydro_ocean} \end{equation} In the atmosphere, using p-coordinates, hydrostatic balance is discretized: \begin{equation} \overline{\theta'}^k + \frac{1}{\Delta \Pi} \delta_k \Phi_h' = 0 +\label{eq:discrete_hydro_atmos} \end{equation} where $\Delta \Pi$ is the difference in Exner function between the pressure points. The non-hydrostatic equations are not available in