--- manual/s_algorithm/text/spatial-discrete.tex 2006/06/28 16:55:53 1.21 +++ manual/s_algorithm/text/spatial-discrete.tex 2017/06/14 21:05:01 1.25 @@ -1,4 +1,4 @@ -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_algorithm/text/spatial-discrete.tex,v 1.21 2006/06/28 16:55:53 jmc Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_algorithm/text/spatial-discrete.tex,v 1.25 2017/06/14 21:05:01 jmc Exp $ % $Name: $ \section{Spatial discretization of the dynamical equations} @@ -74,7 +74,7 @@ \begin{figure} \begin{center} -\resizebox{!}{2in}{ \includegraphics{part2/cgrid3d.eps}} +\resizebox{!}{2in}{ \includegraphics{s_algorithm/figs/cgrid3d.eps}} \end{center} \caption{Three dimensional staggering of velocity components. This facilitates the natural discretization of the continuity and tracer @@ -126,11 +126,11 @@ \begin{figure} \begin{center} \begin{tabular}{cc} - \raisebox{1.5in}{a)}\resizebox{!}{2in}{ \includegraphics{part2/hgrid-Ac.eps}} -& \raisebox{1.5in}{b)}\resizebox{!}{2in}{ \includegraphics{part2/hgrid-Az.eps}} + \raisebox{1.5in}{a)}\resizebox{!}{2in}{ \includegraphics{s_algorithm/figs/hgrid-Ac.eps}} +& \raisebox{1.5in}{b)}\resizebox{!}{2in}{ \includegraphics{s_algorithm/figs/hgrid-Az.eps}} \\ - \raisebox{1.5in}{c)}\resizebox{!}{2in}{ \includegraphics{part2/hgrid-Au.eps}} -& \raisebox{1.5in}{d)}\resizebox{!}{2in}{ \includegraphics{part2/hgrid-Av.eps}} + \raisebox{1.5in}{c)}\resizebox{!}{2in}{ \includegraphics{s_algorithm/figs/hgrid-Au.eps}} +& \raisebox{1.5in}{d)}\resizebox{!}{2in}{ \includegraphics{s_algorithm/figs/hgrid-Av.eps}} \end{tabular} \end{center} \caption{ @@ -148,7 +148,7 @@ The model domain is decomposed into tiles and within each tile a quasi-regular grid is used. A tile is the basic unit of domain decomposition for parallelization but may be used whether parallelized -or not; see section \ref{sect:domain_decomposition} for more details. +or not; see section \ref{sec:domain_decomposition} for more details. Although the tiles may be patched together in an unstructured manner (i.e. irregular or non-tessilating pattern), the interior of tiles is a structured grid of quadrilateral cells. The horizontal coordinate @@ -167,7 +167,7 @@ computational grid using geographic terminology such as points of the compass. \marginpar{Caution!} -This is purely for convenience but should note be confused +This is purely for convenience but should not be confused with the actual geographic orientation of model quantities. Fig.~\ref{fig:hgrid}a shows the tracer cell (synonymous with the @@ -186,7 +186,7 @@ Fig.~\ref{fig:hgrid}b shows the vorticity cell. The length of the southern edge, $\Delta x_c$, western edge, $\Delta y_c$ and surface area, $A_\zeta$, presented in the vertical are stored in arrays {\bf -DXg}, {\bf DYg} and {\bf rAz}. +DXc}, {\bf DYc} and {\bf rAz}. \marginpar{$A_\zeta$: {\bf rAz}} \marginpar{$\Delta x_c$: {\bf DXc}} \marginpar{$\Delta y_c$: {\bf DYc}} @@ -194,7 +194,7 @@ cell centers and the ``$\zeta$'' suffix associates points with the vorticity points. The quantities are staggered in space and the indexing is such that {\bf DXc(i,j)} is positioned to the north of -{\bf rAc(i,j)} and {\bf DYc(i,j)} positioned to the east. +{\bf rAz(i,j)} and {\bf DYc(i,j)} positioned to the east. Fig.~\ref{fig:hgrid}c shows the ``u'' or western (w) cell. The length of the southern edge, $\Delta x_v$, eastern edge, $\Delta y_f$ and @@ -327,8 +327,8 @@ \begin{center} \begin{tabular}{cc} \raisebox{4in}{a)} \resizebox{!}{4in}{ - \includegraphics{part2/vgrid-cellcentered.eps}} & \raisebox{4in}{b)} - \resizebox{!}{4in}{ \includegraphics{part2/vgrid-accurate.eps}} + \includegraphics{s_algorithm/figs/vgrid-cellcentered.eps}} & \raisebox{4in}{b)} + \resizebox{!}{4in}{ \includegraphics{s_algorithm/figs/vgrid-accurate.eps}} \end{tabular} \end{center} \caption{Two versions of the vertical grid. a) The cell centered @@ -407,7 +407,7 @@ \begin{figure} \begin{center} -\resizebox{4.5in}{!}{\includegraphics{part2/vgrid-xz.eps}} +\resizebox{4.5in}{!}{\includegraphics{s_algorithm/figs/vgrid-xz.eps}} \end{center} \caption{ A schematic of the x-r plane showing the location of the