13 |
representation of the position of the boundary. We treat the |
representation of the position of the boundary. We treat the |
14 |
horizontal and vertical directions as separable and differently. |
horizontal and vertical directions as separable and differently. |
15 |
|
|
|
\input{part2/notation} |
|
|
|
|
16 |
|
|
17 |
\subsection{The finite volume method: finite volumes versus finite difference} |
\subsection{The finite volume method: finite volumes versus finite difference} |
18 |
\begin{rawhtml} |
\begin{rawhtml} |
148 |
The model domain is decomposed into tiles and within each tile a |
The model domain is decomposed into tiles and within each tile a |
149 |
quasi-regular grid is used. A tile is the basic unit of domain |
quasi-regular grid is used. A tile is the basic unit of domain |
150 |
decomposition for parallelization but may be used whether parallelized |
decomposition for parallelization but may be used whether parallelized |
151 |
or not; see section \ref{sect:tiles} for more details. Although the |
or not; see section \ref{sect:domain_decomposition} for more details. |
152 |
tiles may be patched together in an unstructured manner |
Although the tiles may be patched together in an unstructured manner |
153 |
(i.e. irregular or non-tessilating pattern), the interior of tiles is |
(i.e. irregular or non-tessilating pattern), the interior of tiles is |
154 |
a structured grid of quadrilateral cells. The horizontal coordinate |
a structured grid of quadrilateral cells. The horizontal coordinate |
155 |
system is orthogonal curvilinear meaning we can not necessarily treat |
system is orthogonal curvilinear meaning we can not necessarily treat |