/[MITgcm]/manual/s_algorithm/text/spatial-discrete.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/spatial-discrete.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.1 by adcroft, Wed Aug 8 16:15:21 2001 UTC revision 1.19 by jmc, Wed Apr 5 01:16:27 2006 UTC
# Line 2  Line 2 
2  % $Name$  % $Name$
3    
4  \section{Spatial discretization of the dynamical equations}  \section{Spatial discretization of the dynamical equations}
5    \begin{rawhtml}
6    <!-- CMIREDIR:spatial_discretization_of_dyn_eq: -->
7    \end{rawhtml}
8    
9    Spatial discretization is carried out using the finite volume
10    method. This amounts to a grid-point method (namely second-order
11    centered finite difference) in the fluid interior but allows
12    boundaries to intersect a regular grid allowing a more accurate
13    representation of the position of the boundary. We treat the
14    horizontal and vertical directions as separable and differently.
15    
16    \input{part2/notation}
17    
18    
19    \subsection{The finite volume method: finite volumes versus finite difference}
20    \begin{rawhtml}
21    <!-- CMIREDIR:finite_volume: -->
22    \end{rawhtml}
23    
24    
25    
26    The finite volume method is used to discretize the equations in
27    space. The expression ``finite volume'' actually has two meanings; one
28    is the method of embedded or intersecting boundaries (shaved or lopped
29    cells in our terminology) and the other is non-linear interpolation
30    methods that can deal with non-smooth solutions such as shocks
31    (i.e. flux limiters for advection). Both make use of the integral form
32    of the conservation laws to which the {\it weak solution} is a
33    solution on each finite volume of (sub-domain). The weak solution can
34    be constructed out of piece-wise constant elements or be
35    differentiable. The differentiable equations can not be satisfied by
36    piece-wise constant functions.
37    
38    As an example, the 1-D constant coefficient advection-diffusion
39    equation:
40    \begin{displaymath}
41    \partial_t \theta + \partial_x ( u \theta - \kappa \partial_x \theta ) = 0
42    \end{displaymath}
43    can be discretized by integrating over finite sub-domains, i.e.
44    the lengths $\Delta x_i$:
45    \begin{displaymath}
46    \Delta x \partial_t \theta + \delta_i ( F ) = 0
47    \end{displaymath}
48    is exact if $\theta(x)$ is piece-wise constant over the interval
49    $\Delta x_i$ or more generally if $\theta_i$ is defined as the average
50    over the interval $\Delta x_i$.
51    
52    The flux, $F_{i-1/2}$, must be approximated:
53    \begin{displaymath}
54    F = u \overline{\theta} - \frac{\kappa}{\Delta x_c} \partial_i \theta
55    \end{displaymath}
56    and this is where truncation errors can enter the solution. The
57    method for obtaining $\overline{\theta}$ is unspecified and a wide
58    range of possibilities exist including centered and upwind
59    interpolation, polynomial fits based on the the volume average
60    definitions of quantities and non-linear interpolation such as
61    flux-limiters.
62    
63    Choosing simple centered second-order interpolation and differencing
64    recovers the same ODE's resulting from finite differencing for the
65    interior of a fluid. Differences arise at boundaries where a boundary
66    is not positioned on a regular or smoothly varying grid. This method
67    is used to represent the topography using lopped cell, see
68    \cite{adcroft:97}. Subtle difference also appear in more than one
69    dimension away from boundaries. This happens because the each
70    direction is discretized independently in the finite difference method
71    while the integrating over finite volume implicitly treats all
72    directions simultaneously. Illustration of this is given in
73    \cite{ac:02}.
74    
75  \subsection{C grid staggering of variables}  \subsection{C grid staggering of variables}
76    
77  \begin{figure}  \begin{figure}
78  \centerline{ \resizebox{!}{2in}{ \includegraphics{part2/cgrid3d.eps}} }  \begin{center}
79  \label{fig-cgrid3d}  \resizebox{!}{2in}{ \includegraphics{part2/cgrid3d.eps}}
80    \end{center}
81  \caption{Three dimensional staggering of velocity components. This  \caption{Three dimensional staggering of velocity components. This
82  facilitates the natural discretization of the continuity and tracer  facilitates the natural discretization of the continuity and tracer
83  equations. }  equations. }
84    \label{fig:cgrid3d}
85  \end{figure}  \end{figure}
86    
87    The basic algorithm employed for stepping forward the momentum
88    equations is based on retaining non-divergence of the flow at all
89    times. This is most naturally done if the components of flow are
90    staggered in space in the form of an Arakawa C grid \cite{arakawa:77}.
91    
92    Fig. \ref{fig:cgrid3d} shows the components of flow ($u$,$v$,$w$)
93    staggered in space such that the zonal component falls on the
94    interface between continuity cells in the zonal direction. Similarly
95    for the meridional and vertical directions.  The continuity cell is
96    synonymous with tracer cells (they are one and the same).
97    
98    
99    
100    \subsection{Grid initialization and data}
101    
102    Initialization of grid data is controlled by subroutine {\em
103    INI\_GRID} which in calls {\em INI\_VERTICAL\_GRID} to initialize the
104    vertical grid, and then either of {\em INI\_CARTESIAN\_GRID}, {\em
105    INI\_SPHERICAL\_POLAR\_GRID} or {\em INI\_CURV\-ILINEAR\_GRID} to
106    initialize the horizontal grid for cartesian, spherical-polar or
107    curvilinear coordinates respectively.
108    
109    The reciprocals of all grid quantities are pre-calculated and this is
110    done in subroutine {\em INI\_MASKS\_ETC} which is called later by
111    subroutine {\em INITIALIZE\_FIXED}.
112    
113    All grid descriptors are global arrays and stored in common blocks in
114    {\em GRID.h} and a generally declared as {\em \_RS}.
115    
116    \fbox{ \begin{minipage}{4.75in}
117    {\em S/R INI\_GRID} ({\em model/src/ini\_grid.F})
118    
119    {\em S/R INI\_MASKS\_ETC} ({\em model/src/ini\_masks\_etc.F})
120    
121    grid data: ({\em model/inc/GRID.h})
122    \end{minipage} }
123    
124    
125  \subsection{Horizontal grid}  \subsection{Horizontal grid}
126    \label{sec:spatial_discrete_horizontal_grid}
127    
128  \begin{figure}  \begin{figure}
129  \centerline{ \begin{tabular}{cc}  \begin{center}
130    \resizebox{!}{2in}{ \includegraphics{part2/hgrid-Ac.eps}}  \begin{tabular}{cc}
131  & \resizebox{!}{2in}{ \includegraphics{part2/hgrid-Az.eps}}    \raisebox{1.5in}{a)}\resizebox{!}{2in}{ \includegraphics{part2/hgrid-Ac.eps}}
132    & \raisebox{1.5in}{b)}\resizebox{!}{2in}{ \includegraphics{part2/hgrid-Az.eps}}
133  \\  \\
134    \resizebox{!}{2in}{ \includegraphics{part2/hgrid-Au.eps}}    \raisebox{1.5in}{c)}\resizebox{!}{2in}{ \includegraphics{part2/hgrid-Au.eps}}
135  & \resizebox{!}{2in}{ \includegraphics{part2/hgrid-Av.eps}}  & \raisebox{1.5in}{d)}\resizebox{!}{2in}{ \includegraphics{part2/hgrid-Av.eps}}
136  \end{tabular} }  \end{tabular}
137  \label{fig-hgrid}  \end{center}
138  \caption{Three dimensional staggering of velocity components. This  \caption{
139  facilitates the natural discretization of the continuity and tracer  Staggering of horizontal grid descriptors (lengths and areas). The
140  equations. }  grid lines indicate the tracer cell boundaries and are the reference
141    grid for all panels. a) The area of a tracer cell, $A_c$, is bordered
142    by the lengths $\Delta x_g$ and $\Delta y_g$. b) The area of a
143    vorticity cell, $A_\zeta$, is bordered by the lengths $\Delta x_c$ and
144    $\Delta y_c$. c) The area of a u cell, $A_c$, is bordered by the
145    lengths $\Delta x_v$ and $\Delta y_f$. d) The area of a v cell, $A_c$,
146    is bordered by the lengths $\Delta x_f$ and $\Delta y_u$.}
147    \label{fig:hgrid}
148  \end{figure}  \end{figure}
149    
150    The model domain is decomposed into tiles and within each tile a
151    quasi-regular grid is used. A tile is the basic unit of domain
152    decomposition for parallelization but may be used whether parallelized
153    or not; see section \ref{sect:domain_decomposition} for more details.
154    Although the tiles may be patched together in an unstructured manner
155    (i.e. irregular or non-tessilating pattern), the interior of tiles is
156    a structured grid of quadrilateral cells. The horizontal coordinate
157    system is orthogonal curvilinear meaning we can not necessarily treat
158    the two horizontal directions as separable. Instead, each cell in the
159    horizontal grid is described by the length of it's sides and it's
160    area.
161    
162    The grid information is quite general and describes any of the
163    available coordinates systems, cartesian, spherical-polar or
164    curvilinear. All that is necessary to distinguish between the
165    coordinate systems is to initialize the grid data (descriptors)
166    appropriately.
167    
168    In the following, we refer to the orientation of quantities on the
169    computational grid using geographic terminology such as points of the
170    compass.
171    \marginpar{Caution!}
172    This is purely for convenience but should note be confused
173    with the actual geographic orientation of model quantities.
174    
175    Fig.~\ref{fig:hgrid}a shows the tracer cell (synonymous with the
176    continuity cell). The length of the southern edge, $\Delta x_g$,
177    western edge, $\Delta y_g$ and surface area, $A_c$, presented in the
178    vertical are stored in arrays {\bf DXg}, {\bf DYg} and {\bf rAc}.
179    \marginpar{$A_c$: {\bf rAc}}
180    \marginpar{$\Delta x_g$: {\bf DXg}}
181    \marginpar{$\Delta y_g$: {\bf DYg}}
182    The ``g'' suffix indicates that the lengths are along the defining
183    grid boundaries. The ``c'' suffix associates the quantity with the
184    cell centers. The quantities are staggered in space and the indexing
185    is such that {\bf DXg(i,j)} is positioned to the south of {\bf
186    rAc(i,j)} and {\bf DYg(i,j)} positioned to the west.
187    
188    Fig.~\ref{fig:hgrid}b shows the vorticity cell. The length of the
189    southern edge, $\Delta x_c$, western edge, $\Delta y_c$ and surface
190    area, $A_\zeta$, presented in the vertical are stored in arrays {\bf
191    DXg}, {\bf DYg} and {\bf rAz}.
192    \marginpar{$A_\zeta$: {\bf rAz}}
193    \marginpar{$\Delta x_c$: {\bf DXc}}
194    \marginpar{$\Delta y_c$: {\bf DYc}}
195    The ``z'' suffix indicates that the lengths are measured between the
196    cell centers and the ``$\zeta$'' suffix associates points with the
197    vorticity points. The quantities are staggered in space and the
198    indexing is such that {\bf DXc(i,j)} is positioned to the north of
199    {\bf rAc(i,j)} and {\bf DYc(i,j)} positioned to the east.
200    
201    Fig.~\ref{fig:hgrid}c shows the ``u'' or western (w) cell. The length of
202    the southern edge, $\Delta x_v$, eastern edge, $\Delta y_f$ and
203    surface area, $A_w$, presented in the vertical are stored in arrays
204    {\bf DXv}, {\bf DYf} and {\bf rAw}.
205    \marginpar{$A_w$: {\bf rAw}}
206    \marginpar{$\Delta x_v$: {\bf DXv}}
207    \marginpar{$\Delta y_f$: {\bf DYf}}
208    The ``v'' suffix indicates that the length is measured between the
209    v-points, the ``f'' suffix indicates that the length is measured
210    between the (tracer) cell faces and the ``w'' suffix associates points
211    with the u-points (w stands for west). The quantities are staggered in
212    space and the indexing is such that {\bf DXv(i,j)} is positioned to
213    the south of {\bf rAw(i,j)} and {\bf DYf(i,j)} positioned to the east.
214    
215    Fig.~\ref{fig:hgrid}d shows the ``v'' or southern (s) cell. The length of
216    the northern edge, $\Delta x_f$, western edge, $\Delta y_u$ and
217    surface area, $A_s$, presented in the vertical are stored in arrays
218    {\bf DXf}, {\bf DYu} and {\bf rAs}.
219    \marginpar{$A_s$: {\bf rAs}}
220    \marginpar{$\Delta x_f$: {\bf DXf}}
221    \marginpar{$\Delta y_u$: {\bf DYu}}
222    The ``u'' suffix indicates that the length is measured between the
223    u-points, the ``f'' suffix indicates that the length is measured
224    between the (tracer) cell faces and the ``s'' suffix associates points
225    with the v-points (s stands for south). The quantities are staggered
226    in space and the indexing is such that {\bf DXf(i,j)} is positioned to
227    the north of {\bf rAs(i,j)} and {\bf DYu(i,j)} positioned to the west.
228    
229    \fbox{ \begin{minipage}{4.75in}
230    {\em S/R INI\_CARTESIAN\_GRID} ({\em
231    model/src/ini\_cartesian\_grid.F})
232    
233    {\em S/R INI\_SPHERICAL\_POLAR\_GRID} ({\em
234    model/src/ini\_spherical\_polar\_grid.F})
235    
236    {\em S/R INI\_CURVILINEAR\_GRID} ({\em
237    model/src/ini\_curvilinear\_grid.F})
238    
239    $A_c$, $A_\zeta$, $A_w$, $A_s$: {\bf rAc}, {\bf rAz}, {\bf rAw}, {\bf rAs}
240    ({\em GRID.h})
241    
242    $\Delta x_g$, $\Delta y_g$: {\bf DXg}, {\bf DYg} ({\em GRID.h})
243    
244    $\Delta x_c$, $\Delta y_c$: {\bf DXc}, {\bf DYc} ({\em GRID.h})
245    
246    $\Delta x_f$, $\Delta y_f$: {\bf DXf}, {\bf DYf} ({\em GRID.h})
247    
248    $\Delta x_v$, $\Delta y_u$: {\bf DXv}, {\bf DYu} ({\em GRID.h})
249    
250    \end{minipage} }
251    
252    \subsubsection{Reciprocals of horizontal grid descriptors}
253    
254    %\marginpar{$A_c^{-1}$: {\bf RECIP\_rAc}}
255    %\marginpar{$A_\zeta^{-1}$: {\bf RECIP\_rAz}}
256    %\marginpar{$A_w^{-1}$: {\bf RECIP\_rAw}}
257    %\marginpar{$A_s^{-1}$: {\bf RECIP\_rAs}}
258    Lengths and areas appear in the denominator of expressions as much as
259    in the numerator. For efficiency and portability, we pre-calculate the
260    reciprocal of the horizontal grid quantities so that in-line divisions
261    can be avoided.
262    
263    %\marginpar{$\Delta x_g^{-1}$: {\bf RECIP\_DXg}}
264    %\marginpar{$\Delta y_g^{-1}$: {\bf RECIP\_DYg}}
265    %\marginpar{$\Delta x_c^{-1}$: {\bf RECIP\_DXc}}
266    %\marginpar{$\Delta y_c^{-1}$: {\bf RECIP\_DYc}}
267    %\marginpar{$\Delta x_f^{-1}$: {\bf RECIP\_DXf}}
268    %\marginpar{$\Delta y_f^{-1}$: {\bf RECIP\_DYf}}
269    %\marginpar{$\Delta x_v^{-1}$: {\bf RECIP\_DXv}}
270    %\marginpar{$\Delta y_u^{-1}$: {\bf RECIP\_DYu}}
271    For each grid descriptor (array) there is a reciprocal named using the
272    prefix {\bf RECIP\_}. This doubles the amount of storage in {\em
273    GRID.h} but they are all only 2-D descriptors.
274    
275    \fbox{ \begin{minipage}{4.75in}
276    {\em S/R INI\_MASKS\_ETC} ({\em
277    model/src/ini\_masks\_etc.F})
278    
279    $A_c^{-1}$: {\bf RECIP\_Ac} ({\em GRID.h})
280    
281    $A_\zeta^{-1}$: {\bf RECIP\_Az} ({\em GRID.h})
282    
283    $A_w^{-1}$: {\bf RECIP\_Aw} ({\em GRID.h})
284    
285    $A_s^{-1}$: {\bf RECIP\_As} ({\em GRID.h})
286    
287    $\Delta x_g^{-1}$, $\Delta y_g^{-1}$: {\bf RECIP\_DXg}, {\bf RECIP\_DYg} ({\em GRID.h})
288    
289    $\Delta x_c^{-1}$, $\Delta y_c^{-1}$: {\bf RECIP\_DXc}, {\bf RECIP\_DYc} ({\em GRID.h})
290    
291    $\Delta x_f^{-1}$, $\Delta y_f^{-1}$: {\bf RECIP\_DXf}, {\bf RECIP\_DYf} ({\em GRID.h})
292    
293    $\Delta x_v^{-1}$, $\Delta y_u^{-1}$: {\bf RECIP\_DXv}, {\bf RECIP\_DYu} ({\em GRID.h})
294    
295    \end{minipage} }
296    
297    \subsubsection{Cartesian coordinates}
298    
299    Cartesian coordinates are selected when the logical flag {\bf
300    using\-Cartes\-ianGrid} in namelist {\em PARM04} is set to true. The grid
301    spacing can be set to uniform via scalars {\bf dXspacing} and {\bf
302    dYspacing} in namelist {\em PARM04} or to variable resolution by the
303    vectors {\bf DELX} and {\bf DELY}. Units are normally
304    meters. Non-dimensional coordinates can be used by interpreting the
305    gravitational constant as the Rayleigh number.
306    
307    \subsubsection{Spherical-polar coordinates}
308    
309    Spherical coordinates are selected when the logical flag {\bf
310    using\-Spherical\-PolarGrid} in namelist {\em PARM04} is set to true. The
311    grid spacing can be set to uniform via scalars {\bf dXspacing} and
312    {\bf dYspacing} in namelist {\em PARM04} or to variable resolution by
313    the vectors {\bf DELX} and {\bf DELY}. Units of these namelist
314    variables are alway degrees. The horizontal grid descriptors are
315    calculated from these namelist variables have units of meters.
316    
317    \subsubsection{Curvilinear coordinates}
318    
319    Curvilinear coordinates are selected when the logical flag {\bf
320    using\-Curvil\-inear\-Grid} in namelist {\em PARM04} is set to true. The
321    grid spacing can not be set via the namelist. Instead, the grid
322    descriptors are read from data files, one for each descriptor. As for
323    other grids, the horizontal grid descriptors have units of meters.
324    
325    
326  \subsection{Vertical grid}  \subsection{Vertical grid}
327    
328  \begin{figure}  \begin{figure}
329  \centerline{ \begin{tabular}{cc}  \begin{center}
330    \raisebox{4in}{a)}    \begin{tabular}{cc}
331    \resizebox{!}{4in}{ \includegraphics{part2/vgrid-cellcentered.eps}}    \raisebox{4in}{a)} \resizebox{!}{4in}{
332  &    \includegraphics{part2/vgrid-cellcentered.eps}} & \raisebox{4in}{b)}
333   \raisebox{4in}{b)}    \resizebox{!}{4in}{ \includegraphics{part2/vgrid-accurate.eps}}
334   \resizebox{!}{4in}{ \includegraphics{part2/vgrid-accurate.eps}}  \end{tabular}
335  \end{tabular} }  \end{center}
 \label{fig-vgrid}  
336  \caption{Two versions of the vertical grid. a) The cell centered  \caption{Two versions of the vertical grid. a) The cell centered
337  approach where the interface depths are specified and the tracer  approach where the interface depths are specified and the tracer
338  points centered in between the interfaces. b) The interface centered  points centered in between the interfaces. b) The interface centered
339  approach where tracer levels are specified and the w-interfaces are  approach where tracer levels are specified and the w-interfaces are
340  centered in between.}  centered in between.}
341    \label{fig:vgrid}
342    \end{figure}
343    
344    As for the horizontal grid, we use the suffixes ``c'' and ``f'' to
345    indicates faces and centers. Fig.~\ref{fig:vgrid}a shows the default
346    vertical grid used by the model.
347    \marginpar{$\Delta r_f$: {\bf DRf}}
348    \marginpar{$\Delta r_c$: {\bf DRc}}
349    $\Delta r_f$ is the difference in $r$
350    (vertical coordinate) between the faces (i.e. $\Delta r_f \equiv -
351    \delta_k r$ where the minus sign appears due to the convention that the
352    surface layer has index $k=1$.).
353    
354    The vertical grid is calculated in subroutine {\em
355    INI\_VERTICAL\_GRID} and specified via the vector {\bf DELR} in
356    namelist {\em PARM04}. The units of ``r'' are either meters or Pascals
357    depending on the isomorphism being used which in turn is dependent
358    only on the choice of equation of state.
359    
360    There are alternative namelist vectors {\bf DELZ} and {\bf DELP} which
361    dictate whether z- or
362    \marginpar{Caution!}
363    p- coordinates are to be used but we intend to
364    phase this out since they are redundant.
365    
366    The reciprocals $\Delta r_f^{-1}$ and $\Delta r_c^{-1}$ are
367    pre-calculated (also in subroutine {\em INI\_VERTICAL\_GRID}). All
368    vertical grid descriptors are stored in common blocks in {\em GRID.h}.
369    
370    The above grid (Fig.~\ref{fig:vgrid}a) is known as the cell centered
371    approach because the tracer points are at cell centers; the cell
372    centers are mid-way between the cell interfaces.
373    This discretization is selected when the thickness of the
374    levels are provided ({\bf delR}, parameter file {\em data},
375    namelist {\em PARM04})
376    An alternative, the vertex or interface centered approach, is shown in
377    Fig.~\ref{fig:vgrid}b. Here, the interior interfaces are positioned
378    mid-way between the tracer nodes (no longer cell centers). This
379    approach is formally more accurate for evaluation of hydrostatic
380    pressure and vertical advection but historically the cell centered
381    approach has been used. An alternative form of subroutine {\em
382    INI\_VERTICAL\_GRID} is used to select the interface centered approach
383    This form requires to specify $Nr+1$ vertical distances {\bf delRc}
384    (parameter file {\em data}, namelist {\em PARM04}, e.g.
385    {\em verification/ideal\_2D\_oce/input/data})
386    corresponding to surface to center, $Nr-1$ center to center, and center to
387    bottom distances.
388    %but no run time option is currently available.
389    
390    \fbox{ \begin{minipage}{4.75in}
391    {\em S/R INI\_VERTICAL\_GRID} ({\em
392    model/src/ini\_vertical\_grid.F})
393    
394    $\Delta r_f$: {\bf DRf} ({\em GRID.h})
395    
396    $\Delta r_c$: {\bf DRc} ({\em GRID.h})
397    
398    $\Delta r_f^{-1}$: {\bf RECIP\_DRf} ({\em GRID.h})
399    
400    $\Delta r_c^{-1}$: {\bf RECIP\_DRc} ({\em GRID.h})
401    
402    \end{minipage} }
403    
404    
405    \subsection{Topography: partially filled cells}
406    \begin{rawhtml}
407    <!-- CMIREDIR:topo_partial_cells: -->
408    \end{rawhtml}
409    
410    \begin{figure}
411    \begin{center}
412    \resizebox{4.5in}{!}{\includegraphics{part2/vgrid-xz.eps}}
413    \end{center}
414    \caption{
415    A schematic of the x-r plane showing the location of the
416    non-dimensional fractions $h_c$ and $h_w$. The physical thickness of a
417    tracer cell is given by $h_c(i,j,k) \Delta r_f(k)$ and the physical
418    thickness of the open side is given by $h_w(i,j,k) \Delta r_f(k)$.}
419    \label{fig:hfacs}
420  \end{figure}  \end{figure}
421    
422    \cite{adcroft:97} presented two alternatives to the step-wise finite
423    difference representation of topography. The method is known to the
424    engineering community as {\em intersecting boundary method}. It
425    involves allowing the boundary to intersect a grid of cells thereby
426    modifying the shape of those cells intersected. We suggested allowing
427    the topography to take on a piece-wise linear representation (shaved
428    cells) or a simpler piecewise constant representation (partial step).
429    Both show dramatic improvements in solution compared to the
430    traditional full step representation, the piece-wise linear being the
431    best. However, the storage requirements are excessive so the simpler
432    piece-wise constant or partial-step method is all that is currently
433    supported.
434    
435    Fig.~\ref{fig:hfacs} shows a schematic of the x-r plane indicating how
436    the thickness of a level is determined at tracer and u points.
437    \marginpar{$h_c$: {\bf hFacC}}
438    \marginpar{$h_w$: {\bf hFacW}}
439    \marginpar{$h_s$: {\bf hFacS}}
440    The physical thickness of a tracer cell is given by $h_c(i,j,k) \Delta
441    r_f(k)$ and the physical thickness of the open side is given by
442    $h_w(i,j,k) \Delta r_f(k)$. Three 3-D descriptors $h_c$, $h_w$ and
443    $h_s$ are used to describe the geometry: {\bf hFacC}, {\bf hFacW} and
444    {\bf hFacS} respectively. These are calculated in subroutine {\em
445    INI\_MASKS\_ETC} along with there reciprocals {\bf RECIP\_hFacC}, {\bf
446    RECIP\_hFacW} and {\bf RECIP\_hFacS}.
447    
448    The non-dimensional fractions (or h-facs as we call them) are
449    calculated from the model depth array and then processed to avoid tiny
450    volumes. The rule is that if a fraction is less than {\bf hFacMin}
451    then it is rounded to the nearer of $0$ or {\bf hFacMin} or if the
452    physical thickness is less than {\bf hFacMinDr} then it is similarly
453    rounded. The larger of the two methods is used when there is a
454    conflict. By setting {\bf hFacMinDr} equal to or larger than the
455    thinnest nominal layers, $\min{(\Delta z_f)}$, but setting {\bf
456    hFacMin} to some small fraction then the model will only lop thick
457    layers but retain stability based on the thinnest unlopped thickness;
458    $\min{(\Delta z_f,\mbox{\bf hFacMinDr})}$.
459    
460    \fbox{ \begin{minipage}{4.75in}
461    {\em S/R INI\_MASKS\_ETC} ({\em model/src/ini\_masks\_etc.F})
462    
463    $h_c$: {\bf hFacC} ({\em GRID.h})
464    
465    $h_w$: {\bf hFacW} ({\em GRID.h})
466    
467    $h_s$: {\bf hFacS} ({\em GRID.h})
468    
469    $h_c^{-1}$: {\bf RECIP\_hFacC} ({\em GRID.h})
470    
471    $h_w^{-1}$: {\bf RECIP\_hFacW} ({\em GRID.h})
472    
473    $h_s^{-1}$: {\bf RECIP\_hFacS} ({\em GRID.h})
474    
475    \end{minipage} }
476    
477    
478    \section{Continuity and horizontal pressure gradient terms}
479    \begin{rawhtml}
480    <!-- CMIREDIR:continuity_and_horizontal_pressure: -->
481    \end{rawhtml}
482    
 \subsection{Continuity and horizontal pressure gradient terms}  
483    
484  The core algorithm is based on the ``C grid'' discretization of the  The core algorithm is based on the ``C grid'' discretization of the
485  continuity equation which can be summarized as:  continuity equation which can be summarized as:
486  \begin{eqnarray}  \begin{eqnarray}
487  \partial_t u + \frac{1}{\Delta x_c} \delta_i \left. \frac{ \partial \Phi}{\partial r}\right|_{s} \eta + \frac{\epsilon_{nh}}{\Delta x_c} \delta_i \Phi_{nh}' & = & G_u - \frac{1}{\Delta x_c} \delta_i \Phi_h' \\  \partial_t u + \frac{1}{\Delta x_c} \delta_i \left. \frac{ \partial \Phi}{\partial r}\right|_{s} \eta + \frac{\epsilon_{nh}}{\Delta x_c} \delta_i \Phi_{nh}' & = & G_u - \frac{1}{\Delta x_c} \delta_i \Phi_h' \label{eq:discrete-momu} \\
488  \partial_t v + \frac{1}{\Delta y_c} \delta_j \left. \frac{ \partial \Phi}{\partial r}\right|_{s} \eta + \frac{\epsilon_{nh}}{\Delta y_c} \delta_j \Phi_{nh}' & = & G_v - \frac{1}{\Delta y_c} \delta_j \Phi_h' \\  \partial_t v + \frac{1}{\Delta y_c} \delta_j \left. \frac{ \partial \Phi}{\partial r}\right|_{s} \eta + \frac{\epsilon_{nh}}{\Delta y_c} \delta_j \Phi_{nh}' & = & G_v - \frac{1}{\Delta y_c} \delta_j \Phi_h' \label{eq:discrete-momv} \\
489  \epsilon_{nh} \left( \partial_t w + \frac{1}{\Delta r_c} \delta_k \Phi_{nh}' \right) & = & \epsilon_{nh} G_w + \overline{b}^k - \frac{1}{\Delta r_c} \delta_k \Phi_{h}' \\  \epsilon_{nh} \left( \partial_t w + \frac{1}{\Delta r_c} \delta_k \Phi_{nh}' \right) & = & \epsilon_{nh} G_w + \overline{b}^k - \frac{1}{\Delta r_c} \delta_k \Phi_{h}' \label{eq:discrete-momw} \\
490  \delta_i \Delta y_g \Delta r_f h_w u +  \delta_i \Delta y_g \Delta r_f h_w u +
491  \delta_j \Delta x_g \Delta r_f h_s v +  \delta_j \Delta x_g \Delta r_f h_s v +
492  \delta_k {\cal A}_c w & = & {\cal A}_c \delta_k (P-E)_{r=0}  \delta_k {\cal A}_c w & = & {\cal A}_c \delta_k (P-E)_{r=0}
493    \label{eq:discrete-continuity}
494  \end{eqnarray}  \end{eqnarray}
495  where the continuity equation has been most naturally discretized by  where the continuity equation has been most naturally discretized by
496  staggering the three components of velocity as shown in  staggering the three components of velocity as shown in
497  Fig.~\ref{fig-cgrid3d}. The grid lengths $\Delta x_c$ and $\Delta y_c$  Fig.~\ref{fig:cgrid3d}. The grid lengths $\Delta x_c$ and $\Delta y_c$
498  are the lengths between tracer points (cell centers). The grid lengths  are the lengths between tracer points (cell centers). The grid lengths
499  $\Delta x_g$, $\Delta y_g$ are the grid lengths between cell  $\Delta x_g$, $\Delta y_g$ are the grid lengths between cell
500  corners. $\Delta r_f$ and $\Delta r_c$ are the distance (in units of  corners. $\Delta r_f$ and $\Delta r_c$ are the distance (in units of
# Line 75  A}_c$.  The factors $h_w$ and $h_s$ are Line 507  A}_c$.  The factors $h_w$ and $h_s$ are
507  \marginpar{$h_s$: {\bf hFacS}}  \marginpar{$h_s$: {\bf hFacS}}
508    
509  The last equation, the discrete continuity equation, can be summed in  The last equation, the discrete continuity equation, can be summed in
510  the vertical to yeild the free-surface equation:  the vertical to yield the free-surface equation:
511  \begin{equation}  \begin{equation}
512  {\cal A}_c \partial_t \eta + \delta_i \sum_k \Delta y_g \Delta r_f h_w u + \delta_j \sum_k \Delta x_g \Delta r_f h_s v =  {\cal A}_c \partial_t \eta + \delta_i \sum_k \Delta y_g \Delta r_f h_w
513  {\cal A}_c(P-E)_{r=0}  u + \delta_j \sum_k \Delta x_g \Delta r_f h_s v = {\cal
514    A}_c(P-E)_{r=0} \label{eq:discrete-freesurface}
515  \end{equation}  \end{equation}
516  The source term $P-E$ on the rhs of continuity accounts for the local  The source term $P-E$ on the rhs of continuity accounts for the local
517  addition of volume due to excess precipitation and run-off over  addition of volume due to excess precipitation and run-off over
518  evaporation and only enters the top-level of the {\em ocean} model.  evaporation and only enters the top-level of the {\em ocean} model.
519    
520  \subsection{Hydrostatic balance}  \section{Hydrostatic balance}
521    \begin{rawhtml}
522    <!-- CMIREDIR:hydrostatic_balance: -->
523    \end{rawhtml}
524    
525  The vertical momentum equation has the hydrostatic or  The vertical momentum equation has the hydrostatic or
526  quasi-hydrostatic balance on the right hand side. This discretization  quasi-hydrostatic balance on the right hand side. This discretization
# Line 93  derived from the buoyancy equation exact Line 529  derived from the buoyancy equation exact
529  from the pressure gradient terms when forming the kinetic energy  from the pressure gradient terms when forming the kinetic energy
530  equation.  equation.
531    
532  In the ocean, using z-ccordinates, the hydrostatic balance terms are  In the ocean, using z-coordinates, the hydrostatic balance terms are
533  discretized:  discretized:
534  \begin{equation}  \begin{equation}
535  \epsilon_{nh} \partial_t w  \epsilon_{nh} \partial_t w
536  + g \overline{\rho'}^k + \frac{1}{\Delta z} \delta_k \Phi_h' = \ldots  + g \overline{\rho'}^k + \frac{1}{\Delta z} \delta_k \Phi_h' = \ldots
537    \label{eq:discrete_hydro_ocean}
538  \end{equation}  \end{equation}
539    
540  In the atmosphere, using p-coordinates, hydrostatic balance is  In the atmosphere, using p-coordinates, hydrostatic balance is
541  discretized:  discretized:
542  \begin{equation}  \begin{equation}
543  \overline{\theta'}^k + \frac{1}{\Delta \Pi} \delta_k \Phi_h' = 0  \overline{\theta'}^k + \frac{1}{\Delta \Pi} \delta_k \Phi_h' = 0
544    \label{eq:discrete_hydro_atmos}
545  \end{equation}  \end{equation}
546  where $\Delta \Pi$ is the difference in Exner function between the  where $\Delta \Pi$ is the difference in Exner function between the
547  pressure points. The non-hydrostatic equations are not available in  pressure points. The non-hydrostatic equations are not available in
# Line 111  the atmosphere. Line 549  the atmosphere.
549    
550  The difference in approach between ocean and atmosphere occurs because  The difference in approach between ocean and atmosphere occurs because
551  of the direct use of the ideal gas equation in forming the potential  of the direct use of the ideal gas equation in forming the potential
552  energy conversion term $\alpha \omega$. The form of these consversion  energy conversion term $\alpha \omega$. The form of these conversion
553  terms is discussed at length in \cite{Adcroft01}.  terms is discussed at length in \cite{adcroft:02}.
554    
555  Because of the different representation of hydrostatic balance between  Because of the different representation of hydrostatic balance between
556  ocean and atmosphere there is no elegant way to represent both systems  ocean and atmosphere there is no elegant way to represent both systems
# Line 127  CALC\_PHI\_HYD}. Inside this routine, on Line 565  CALC\_PHI\_HYD}. Inside this routine, on
565  atmospheric/oceanic form is selected based on the string variable {\bf  atmospheric/oceanic form is selected based on the string variable {\bf
566  buoyancyRelation}.  buoyancyRelation}.
567    
 \subsection{Flux-form momentum equations}  
   
 The original finite volume model was based on the Eulerian flux form  
 momentum equations. This is the default though the vector invariant  
 form is optionally available (and recommended in some cases).  
   
 The ``G's'' (our colloquial name for all terms on rhs!) are broken  
 into the various advective, Coriolis, horizontal dissipation, vertical  
 dissipation and metric forces:  
 \marginpar{$G_u$: {\bf Gu} }  
 \marginpar{$G_v$: {\bf Gv} }  
 \marginpar{$G_w$: {\bf Gw} }  
 \begin{eqnarray}  
 G_u & = & G_u^{adv} + G_u^{cor} + G_u^{h-diss} + G_u^{v-diss} +  
 G_u^{metric} + G_u^{nh-metric} \\  
 G_v & = & G_v^{adv} + G_v^{cor} + G_v^{h-diss} + G_v^{v-diss} +  
 G_v^{metric} + G_v^{nh-metric} \\  
 G_w & = & G_w^{adv} + G_w^{cor} + G_w^{h-diss} + G_w^{v-diss} +  
 G_w^{metric} + G_w^{nh-metric}  
 \end{eqnarray}  
 In the hydrostatic limit, $G_w=0$ and $\epsilon_{nh}=0$, reducing the  
 vertical momentum to hydrostatic balance.  
   
 These terms are calculated in routines called from subroutine {\em  
 CALC\_MOM\_RHS} a collected into the global arrays {\bf Gu}, {\bf Gv},  
 and {\bf Gw}.  
   
 \fbox{ \begin{minipage}{4.25in}  
 {\em S/R CALC\_MOM\_RHS} ({\em pkg/mom\_fluxform/calc\_mom\_rhs.F})  
   
 $G_u$: {\bf Gu} ({\em DYNVARS.h})  
   
 $G_v$: {\bf Gv} ({\em DYNVARS.h})  
   
 $G_w$: {\bf Gw} ({\em DYNVARS.h})  
 \end{minipage} }  
   
   
 \subsubsection{Advection of momentum}  
   
 The advective operator is second order accurate in space:  
 \begin{eqnarray}  
 {\cal A}_w \Delta r_f h_w G_u^{adv} & = &  
   \delta_i \overline{ U }^i \overline{ u }^i  
 + \delta_j \overline{ V }^i \overline{ u }^j  
 + \delta_k \overline{ W }^i \overline{ u }^k \\  
 {\cal A}_s \Delta r_f h_s G_v^{adv} & = &  
   \delta_i \overline{ U }^j \overline{ v }^i  
 + \delta_j \overline{ V }^j \overline{ v }^j  
 + \delta_k \overline{ W }^j \overline{ v }^k \\  
 {\cal A}_c \Delta r_c G_w^{adv} & = &  
   \delta_i \overline{ U }^k \overline{ w }^i  
 + \delta_j \overline{ V }^k \overline{ w }^j  
 + \delta_k \overline{ W }^k \overline{ w }^k \\  
 \end{eqnarray}  
 and because of the flux form does not contribute to the global budget  
 of linear momentum. The quantities $U$, $V$ and $W$ are volume fluxes  
 defined:  
 \marginpar{$U$: {\bf uTrans} }  
 \marginpar{$V$: {\bf vTrans} }  
 \marginpar{$W$: {\bf rTrans} }  
 \begin{eqnarray}  
 U & = & \Delta y_g \Delta r_f h_w u \\  
 V & = & \Delta x_g \Delta r_f h_s v \\  
 W & = & {\cal A}_c w  
 \end{eqnarray}  
 The advection of momentum takes the same form as the advection of  
 tracers but by a translated advective flow. Consequently, the  
 conservation of second moments, derived for tracers later, applies to  
 $u^2$ and $v^2$ and $w^2$ so that advection of momentum correctly  
 conserves kinetic energy.  
   
 \fbox{ \begin{minipage}{4.25in}  
 {\em S/R MOM\_U\_ADV\_UU} ({\em mom\_u\_adv\_uu.F})  
   
 {\em S/R MOM\_U\_ADV\_VU} ({\em mom\_u\_adv\_vu.F})  
   
 {\em S/R MOM\_U\_ADV\_WU} ({\em mom\_u\_adv\_wu.F})  
   
 {\em S/R MOM\_U\_ADV\_UV} ({\em mom\_u\_adv\_uv.F})  
   
 {\em S/R MOM\_U\_ADV\_VV} ({\em mom\_u\_adv\_vv.F})  
   
 {\em S/R MOM\_U\_ADV\_WV} ({\em mom\_u\_adv\_wv.F})  
   
 $uu$, $uv$, $vu$, $vv$: {\bf aF} (local to {\em calc\_mom\_rhs.F})  
 \end{minipage} }  
   
   
   
 \subsubsection{Coriolis terms}  
   
 The ``pure C grid'' Coriolis terms (i.e. in absence of C-D scheme) are  
 discretized:  
 \begin{eqnarray}  
 {\cal A}_w \Delta r_f h_w G_u^{Cor} & = &  
   \overline{ f {\cal A}_c \Delta r_f h_c \overline{ v }^j }^i  
 - \epsilon_{nh} \overline{ f' {\cal A}_c \Delta r_f h_c \overline{ w }^k }^i \\  
 {\cal A}_s \Delta r_f h_s G_v^{Cor} & = &  
 - \overline{ f {\cal A}_c \Delta r_f h_c \overline{ u }^i }^j \\  
 {\cal A}_c \Delta r_c G_w^{Cor} & = &  
  \epsilon_{nh} \overline{ f' {\cal A}_c \Delta r_f h_c \overline{ u }^i }^k  
 \end{eqnarray}  
 where the Coriolis parameters $f$ and $f'$ are defined:  
 \begin{eqnarray}  
 f & = & 2 \Omega \sin{\phi} \\  
 f' & = & 2 \Omega \cos{\phi}  
 \end{eqnarray}  
 when using spherical geometry, otherwise the $\beta$-plane definition is used:  
 \begin{eqnarray}  
 f & = & f_o + \beta y \\  
 f' & = & 0  
 \end{eqnarray}  
   
 This discretization globally conserves kinetic energy. It should be  
 noted that despite the use of this discretization in former  
 publications, all calculations to date have used the following  
 different discretization:  
 \begin{eqnarray}  
 G_u^{Cor} & = &  
   f_u \overline{ v }^{ji}  
 - \epsilon_{nh} f_u' \overline{ w }^{ik} \\  
 G_v^{Cor} & = &  
 - f_v \overline{ u }^{ij} \\  
 G_w^{Cor} & = &  
  \epsilon_{nh} f_w' \overline{ u }^{ik}  
 \end{eqnarray}  
 \marginpar{Need to change the default in code to match this}  
 where the subscripts on $f$ and $f'$ indicate evaluation of the  
 Coriolis parameters at the appropriate points in space. The above  
 discretization does {\em not} conserve anything, especially energy. An  
 option to recover this discretization has been retained for backward  
 compatibility testing (set run-time logical {\bf  
 useNonconservingCoriolis} to {\em true} which otherwise defaults to  
 {\em false}).  
   
 \fbox{ \begin{minipage}{4.25in}  
 {\em S/R MOM\_CDSCHEME} ({\em mom\_cdscheme.F})  
   
 {\em S/R MOM\_U\_CORIOLIS} ({\em mom\_u\_coriolis.F})  
   
 {\em S/R MOM\_V\_CORIOLIS} ({\em mom\_v\_coriolis.F})  
   
 $G_u^{Cor}$, $G_v^{Cor}$: {\bf cF} (local to {\em calc\_mom\_rhs.F})  
 \end{minipage} }  
   
   
 \subsubsection{Curvature metric terms}  
   
 The most commonly used coordinate system on the sphere is the  
 geographic system $(\lambda,\phi)$. The curvilinear nature of these  
 coordinates on the sphere lead to some ``metric'' terms in the  
 component momentum equations. Under the thin-atmosphere and  
 hydrostatic approximations these terms are discretized:  
 \begin{eqnarray}  
 {\cal A}_w \Delta r_f h_w G_u^{metric} & = &  
   \overline{ \frac{ \overline{u}^i }{a} \tan{\phi} {\cal A}_c \Delta r_f h_c \overline{ v }^j }^i \\  
 {\cal A}_s \Delta r_f h_s G_v^{metric} & = &  
 - \overline{ \frac{ \overline{u}^i }{a} \tan{\phi} {\cal A}_c \Delta r_f h_c \overline{ u }^i }^j \\  
 G_w^{metric} & = & 0  
 \end{eqnarray}  
 where $a$ is the radius of the planet (sphericity is assumed) or the  
 radial distance of the particle (i.e. a function of height).  It is  
 easy to see that this discretization satisfies all the properties of  
 the discrete Coriolis terms since the metric factor $\frac{u}{a}  
 \tan{\phi}$ can be viewed as a modification of the vertical Coriolis  
 parameter: $f \rightarrow f+\frac{u}{a} \tan{\phi}$.  
   
 However, as for the Coriolis terms, a non-energy conserving form has  
 exclusively been used to date:  
 \begin{eqnarray}  
 G_u^{metric} & = & \frac{u \overline{v}^{ij} }{a} \tan{\phi} \\  
 G_v^{metric} & = & \frac{ \overline{u}^{ij} \overline{u}^{ij}}{a} \tan{\phi}  
 \end{eqnarray}  
 where $\tan{\phi}$ is evaluated at the $u$ and $v$ points  
 respectively.  
   
 \fbox{ \begin{minipage}{4.25in}  
 {\em S/R MOM\_U\_METRIC\_SPHERE} ({\em mom\_u\_metric\_sphere.F})  
   
 {\em S/R MOM\_V\_METRIC\_SPHERE} ({\em mom\_v\_metric\_sphere.F})  
   
 $G_u^{metric}$, $G_v^{metric}$: {\bf mT} (local to {\em calc\_mom\_rhs.F})  
 \end{minipage} }  
   
   
   
 \subsubsection{Non-hydrostatic metric terms}  
   
 For the non-hydrostatic equations, dropping the thin-atmosphere  
 approximation re-introduces metric terms involving $w$ and are  
 required to conserve anglular momentum:  
 \begin{eqnarray}  
 {\cal A}_w \Delta r_f h_w G_u^{metric} & = &  
 - \overline{ \frac{ \overline{u}^i \overline{w}^k }{a} {\cal A}_c \Delta r_f h_c }^i \\  
 {\cal A}_s \Delta r_f h_s G_v^{metric} & = &  
 - \overline{ \frac{ \overline{v}^j \overline{w}^k }{a} {\cal A}_c \Delta r_f h_c}^j \\  
 {\cal A}_c \Delta r_c G_w^{metric} & = &  
   \overline{ \frac{ {\overline{u}^i}^2 + {\overline{v}^j}^2}{a} {\cal A}_c \Delta r_f h_c }^k  
 \end{eqnarray}  
   
 Because we are always consistent, even if consistently wrong, we have,  
 in the past, used a different discretization in the model which is:  
 \begin{eqnarray}  
 G_u^{metric} & = &  
 - \frac{u}{a} \overline{w}^{ik} \\  
 G_v^{metric} & = &  
 - \frac{v}{a} \overline{w}^{jk} \\  
 G_w^{metric} & = &  
   \frac{1}{a} ( {\overline{u}^{ik}}^2 + {\overline{v}^{jk}}^2 )  
 \end{eqnarray}  
   
 \fbox{ \begin{minipage}{4.25in}  
 {\em S/R MOM\_U\_METRIC\_NH} ({\em mom\_u\_metric\_nh.F})  
   
 {\em S/R MOM\_V\_METRIC\_NH} ({\em mom\_v\_metric\_nh.F})  
   
 $G_u^{metric}$, $G_v^{metric}$: {\bf mT} (local to {\em calc\_mom\_rhs.F})  
 \end{minipage} }  
   
   
 \subsubsection{Lateral dissipation}  
   
 Historically, we have represented the SGS Reynolds stresses as simply  
 down gradient momentum fluxes, ignoring constraints on the stress  
 tensor such as symmetry.  
 \begin{eqnarray}  
 {\cal A}_w \Delta r_f h_w G_u^{h-diss} & = &  
   \delta_i  \Delta y_f \Delta r_f h_c \tau_{11}  
 + \delta_j  \Delta x_v \Delta r_f h_\zeta \tau_{12} \\  
 {\cal A}_s \Delta r_f h_s G_v^{h-diss} & = &  
   \delta_i  \Delta y_u \Delta r_f h_\zeta \tau_{21}  
 + \delta_j  \Delta x_f \Delta r_f h_c \tau_{22}  
 \end{eqnarray}  
 \marginpar{Check signs of stress definitions}  
   
 The lateral viscous stresses are discretized:  
 \begin{eqnarray}  
 \tau_{11} & = & A_h c_{11\Delta}(\phi) \frac{1}{\Delta x_f} \delta_i u  
                -A_4 c_{11\Delta^2}(\phi) \frac{1}{\Delta x_f} \delta_i \nabla^2 u \\  
 \tau_{12} & = & A_h c_{12\Delta}(\phi) \frac{1}{\Delta y_u} \delta_j u  
                -A_4 c_{12\Delta^2}(\phi)\frac{1}{\Delta y_u} \delta_j \nabla^2 u \\  
 \tau_{21} & = & A_h c_{21\Delta}(\phi) \frac{1}{\Delta x_v} \delta_i v  
                -A_4 c_{21\Delta^2}(\phi) \frac{1}{\Delta x_v} \delta_i \nabla^2 v \\  
 \tau_{22} & = & A_h c_{22\Delta}(\phi) \frac{1}{\Delta y_f} \delta_j v  
                -A_4 c_{22\Delta^2}(\phi) \frac{1}{\Delta y_f} \delta_j \nabla^2 v  
 \end{eqnarray}  
 where the non-dimensional factors $c_{lm\Delta^n}(\phi), \{l,m,n\} \in  
 \{1,2\}$ define the ``cosine'' scaling with latitude which can be  
 applied in various ad-hoc ways. For instance, $c_{11\Delta} =  
 c_{21\Delta} = (\cos{\phi})^{3/2}$, $c_{12\Delta}=c_{22\Delta}=0$ would  
 represent the an-isotropic cosine scaling typically used on the  
 ``lat-lon'' grid for Laplacian viscosity.  
 \marginpar{Need to tidy up method for controlling this in code}  
   
 It should be noted that dispite the ad-hoc nature of the scaling, some  
 scaling must be done since on a lat-lon grid the converging meridians  
 make it very unlikely that a stable viscosity parameter exists across  
 the entire model domain.  
   
 The Laplacian viscosity coefficient, $A_h$ ({\bf viscAh}), has units  
 of $m^2 s^{-1}$. The bi-harmonic viscosity coefficient, $A_4$ ({\bf  
 viscA4}), has units of $m^4 s^{-1}$.  
   
 \fbox{ \begin{minipage}{4.25in}  
 {\em S/R MOM\_U\_XVISCFLUX} ({\em mom\_u\_xviscflux.F})  
   
 {\em S/R MOM\_U\_YVISCFLUX} ({\em mom\_u\_yviscflux.F})  
   
 {\em S/R MOM\_V\_XVISCFLUX} ({\em mom\_v\_xviscflux.F})  
   
 {\em S/R MOM\_V\_YVISCFLUX} ({\em mom\_v\_yviscflux.F})  
   
 $\tau_{11}$, $\tau_{12}$, $\tau_{22}$, $\tau_{22}$: {\bf vF}, {\bf  
 v4F} (local to {\em calc\_mom\_rhs.F})  
 \end{minipage} }  
   
 Two types of lateral boundary condition exist for the lateral viscous  
 terms, no-slip and free-slip.  
   
 The free-slip condition is most convenient to code since it is  
 equivalent to zero-stress on boundaries. Simple masking of the stress  
 components sets them to zero. The fractional open stress is properly  
 handled using the lopped cells.  
   
 The no-slip condition defines the normal gradient of a tangential flow  
 such that the flow is zero on the boundary. Rather than modify the  
 stresses by using complicated functions of the masks and ``ghost''  
 points (see \cite{Adcroft+Marshall98}) we add the boundary stresses as  
 an additional source term in cells next to solid boundaries. This has  
 the advantage of being able to cope with ``thin walls'' and also makes  
 the interior stress calculation (code) independent of the boundary  
 conditions. The ``body'' force takes the form:  
 \begin{eqnarray}  
 G_u^{side-drag} & = &  
 \frac{4}{\Delta z_f} \overline{ (1-h_\zeta) \frac{\Delta x_v}{\Delta y_u} }^j  
 \left( A_h c_{12\Delta}(\phi) u - A_4 c_{12\Delta^2}(\phi) \nabla^2 u \right)  
 \\  
 G_v^{side-drag} & = &  
 \frac{4}{\Delta z_f} \overline{ (1-h_\zeta) \frac{\Delta y_u}{\Delta x_v} }^i  
 \left( A_h c_{21\Delta}(\phi) v - A_4 c_{21\Delta^2}(\phi) \nabla^2 v \right)  
 \end{eqnarray}  
   
 In fact, the above discretization is not quite complete because it  
 assumes that the bathymetry at velocity points is deeper than at  
 neighbouring vorticity points, e.g. $1-h_w < 1-h_\zeta$  
   
 \fbox{ \begin{minipage}{4.25in}  
 {\em S/R MOM\_U\_SIDEDRAG} ({\em mom\_u\_sidedrag.F})  
   
 {\em S/R MOM\_V\_SIDEDRAG} ({\em mom\_v\_sidedrag.F})  
   
 $G_u^{side-drag}$, $G_v^{side-drag}$: {\bf vF} (local to {\em calc\_mom\_rhs.F})  
 \end{minipage} }  
   
   
 \subsubsection{Vertical dissipation}  
   
 Vertical viscosity terms are discretized with only partial adherence  
 to the variable grid lengths introduced by the finite volume  
 formulation. This reduces the formal accuracy of these terms to just  
 first order but only next to boundaries; exactly where other terms  
 appear such as linar and quadratic bottom drag.  
 \begin{eqnarray}  
 G_u^{v-diss} & = &  
 \frac{1}{\Delta r_f h_w} \delta_k \tau_{13} \\  
 G_v^{v-diss} & = &  
 \frac{1}{\Delta r_f h_s} \delta_k \tau_{23} \\  
 G_w^{v-diss} & = & \epsilon_{nh}  
 \frac{1}{\Delta r_f h_d} \delta_k \tau_{33}  
 \end{eqnarray}  
 represents the general discrete form of the vertical dissipation terms.  
   
 In the interior the vertical stresses are discretized:  
 \begin{eqnarray}  
 \tau_{13} & = & A_v \frac{1}{\Delta r_c} \delta_k u \\  
 \tau_{23} & = & A_v \frac{1}{\Delta r_c} \delta_k v \\  
 \tau_{33} & = & A_v \frac{1}{\Delta r_f} \delta_k w  
 \end{eqnarray}  
 It should be noted that in the non-hydrostatic form, the stress tensor  
 is even less consistent than for the hydrostatic (see Wazjowicz  
 \cite{Waojz}). It is well known how to do this properly (see Griffies  
 \cite{Griffies}) and is on the list of to-do's.  
   
 \fbox{ \begin{minipage}{4.25in}  
 {\em S/R MOM\_U\_RVISCLFUX} ({\em mom\_u\_rviscflux.F})  
   
 {\em S/R MOM\_V\_RVISCLFUX} ({\em mom\_v\_rviscflux.F})  
   
 $\tau_{13}$: {\bf urf} (local to {\em calc\_mom\_rhs.F})  
   
 $\tau_{23}$: {\bf vrf} (local to {\em calc\_mom\_rhs.F})  
 \end{minipage} }  
   
   
 As for the lateral viscous terms, the free-slip condition is  
 equivalent to simply setting the stress to zero on boundaries.  The  
 no-slip condition is implemented as an additional term acting on top  
 of the interior and free-slip stresses. Bottom drag represents  
 additional friction, in addition to that imposed by the no-slip  
 condition at the bottom. The drag is cast as a stress expressed as a  
 linear or quadratic function of the mean flow in the layer above the  
 topography:  
 \begin{eqnarray}  
 \tau_{13}^{bottom-drag} & = &  
 \left(  
 2 A_v \frac{1}{\Delta r_c}  
 + r_b  
 + C_d \sqrt{ \overline{2 KE}^i }  
 \right) u \\  
 \tau_{23}^{bottom-drag} & = &  
 \left(  
 2 A_v \frac{1}{\Delta r_c}  
 + r_b  
 + C_d \sqrt{ \overline{2 KE}^j }  
 \right) v  
 \end{eqnarray}  
 where these terms are only evaluated immediately above topography.  
 $r_b$ ({\bf bottomDragLinear}) has units of $m s^{-1}$ and a typical value  
 of the order 0.0002 $m s^{-1}$. $C_d$ ({\bf bottomDragQuadratic}) is  
 dimensionless with typical values in the range 0.001--0.003.  
   
 \fbox{ \begin{minipage}{4.25in}  
 {\em S/R MOM\_U\_BOTTOMDRAG} ({\em mom\_u\_bottomdrag.F})  
   
 {\em S/R MOM\_V\_BOTTOMDRAG} ({\em mom\_v\_bottomdrag.F})  
   
 $\tau_{13}^{bottom-drag}$, $\tau_{23}^{bottom-drag}$: {\bf vf} (local to {\em calc\_mom\_rhs.F})  
 \end{minipage} }  
   
   
   
   
   
 \subsection{Tracer equations}  
   
 The tracer equations are discretized consistantly with the continuity  
 equation to facilitate conservation properties analogous to the  
 continuum:  
 \begin{equation}  
 {\cal A}_c \Delta r_f h_c \partial_\theta  
 + \delta_i U \overline{ \theta }^i  
 + \delta_j V \overline{ \theta }^j  
 + \delta_k W \overline{ \theta }^k  
 = {\cal A}_c \Delta r_f h_c {\cal S}_\theta + \theta {\cal A}_c \delta_k (P-E)_{r=0}  
 \end{equation}  
 The quantities $U$, $V$ and $W$ are volume fluxes defined:  
 \marginpar{$U$: {\bf uTrans} }  
 \marginpar{$V$: {\bf vTrans} }  
 \marginpar{$W$: {\bf rTrans} }  
 \begin{eqnarray}  
 U & = & \Delta y_g \Delta r_f h_w u \\  
 V & = & \Delta x_g \Delta r_f h_s v \\  
 W & = & {\cal A}_c w  
 \end{eqnarray}  
 ${\cal S}$ represents the ``parameterized'' SGS processes and  
 physics associated with the tracer. For instance, potential  
 temperature equation in the ocean has is forced by surface and  
 partially penetrating heat fluxes:  
 \begin{equation}  
 {\cal A}_c \Delta r_f h_c {\cal S}_\theta = \frac{1}{c_p \rho_o} \delta_k {\cal A}_c {\cal Q}  
 \end{equation}  
 while the salt equation has no real sources, ${\cal S}=0$, which  
 leaves just the $P-E$ term.  
   
 The continuity equation can be recovered by setting ${\cal Q}=0$ and  
 $\theta=1$. The term $\theta (P-E)_{r=0}$ is required to retain local  
 conservation of $\theta$. Global conservation is not possible using  
 the flux-form (as here) and a linearized free-surface  
 (\cite{Griffies00,Campin02}).  
   
   
   
   
 \subsection{Derivation of discrete energy conservation}  
   
 These discrete equations conserve kinetic plus potential energy using the  
 following definitions:  
 \begin{equation}  
 KE = \frac{1}{2} \left( \overline{ u^2 }^i + \overline{ v^2 }^j +  
 \epsilon_{nh} \overline{ w^2 }^k \right)  
 \end{equation}  
   
   
 \subsection{Vector invariant momentum equations}  
   
 The finite volume method lends itself to describing the continuity and  
 tracer equations in curvilinear coordinate systems but the appearance  
 of new metric terms in the flux-form momentum equations makes  
 generalizing them far from elegant. The vector invariant form of the  
 momentum equations are exactly that; invariant under coordinate  
 transformations.  
   
 The non-hydrostatic vector invariant equations read:  
 \begin{equation}  
 \partial_t \vec{v} + ( 2\vec{\Omega} + \vec{\zeta}) \wedge \vec{v}  
 - b \hat{r}  
 + \vec{\nabla} B = \vec{\nabla} \cdot \vec{\bf \tau}  
 \end{equation}  
 which describe motions in any orthogonal curvilinear coordinate  
 system. Here, $B$ is the Bernoulli function and $\vec{\zeta}=\nabla  
 \wedge \vec{v}$ is the vorticity vector. We can take advantage of the  
 elegance of these equations when discretizing them and use the  
 discrete definitions of the grad, curl and divergence operators to  
 satisfy constraints. We can also consider the analogy to forming  
 derived equations, such as the vorticity equation, and examine how the  
 discretization can be adjusted to give suitable vorticity advection  
 among other things.  
   
 The underlying algorithm is the same as for the flux form  
 equations. All that has changed is the contents of the ``G's''. For  
 the time-being, only the hydrostatic terms have been coded but we will  
 indicate the points where non-hydrostatic contributions will enter:  
 \begin{eqnarray}  
 G_u & = & G_u^{fv} + G_u^{\zeta_3 v} + G_u^{\zeta_2 w} + G_u^{\partial_x B}  
 + G_u^{\partial_z \tau^x} + G_u^{h-dissip} + G_u^{v-dissip} \\  
 G_v & = & G_v^{fu} + G_v^{\zeta_3 u} + G_v^{\zeta_1 w} + G_v^{\partial_y B}  
 + G_v^{\partial_z \tau^y} + G_v^{h-dissip} + G_v^{v-dissip} \\  
 G_w & = & G_w^{fu} + G_w^{\zeta_1 v} + G_w^{\zeta_2 u} + G_w^{\partial_z B}  
 + G_w^{h-dissip} + G_w^{v-dissip}  
 \end{eqnarray}  
   
 \fbox{ \begin{minipage}{4.25in}  
 {\em S/R CALC\_MOM\_RHS} ({\em pkg/mom\_vecinv/calc\_mom\_rhs.F})  
   
 $G_u$: {\bf Gu} ({\em DYNVARS.h})  
   
 $G_v$: {\bf Gv} ({\em DYNVARS.h})  
   
 $G_w$: {\bf Gw} ({\em DYNVARS.h})  
 \end{minipage} }  
   
 \subsubsection{Relative vorticity}  
   
 The vertical component of relative vorticity is explicitly calculated  
 and use in the discretization. The particular form is crucial for  
 numerical stablility; alternative definitions break the conservation  
 properties of the discrete equations.  
   
 Relative vorticity is defined:  
 \begin{equation}  
 \zeta_3 = \frac{\Gamma}{A_\zeta}  
 = \frac{1}{{\cal A}_\zeta} ( \delta_i \Delta y_c v - \delta_j \Delta x_c u )  
 \end{equation}  
 where ${\cal A}_\zeta$ is the area of the vorticity cell presented in  
 the vertical and $\Gamma$ is the circulation about that cell.  
   
 \fbox{ \begin{minipage}{4.25in}  
 {\em S/R MOM\_VI\_CALC\_RELVORT3} ({\em mom\_vi\_calc\_relvort3.F})  
   
 $\zeta_3$: {\bf vort3} (local to {\em calc\_mom\_rhs.F})  
 \end{minipage} }  
   
   
 \subsubsection{Kinetic energy}  
   
 The kinetic energy, denoted $KE$, is defined:  
 \begin{equation}  
 KE = \frac{1}{2} ( \overline{ u^2 }^i + \overline{ v^2 }^j  
 + \epsilon_{nh} \overline{ w^2 }^k )  
 \end{equation}  
   
 \fbox{ \begin{minipage}{4.25in}  
 {\em S/R MOM\_VI\_CALC\_KE} ({\em mom\_vi\_calc\_ke.F})  
   
 $KE$: {\bf KE} (local to {\em calc\_mom\_rhs.F})  
 \end{minipage} }  
   
   
 \subsubsection{Coriolis terms}  
   
 The potential enstrophy conserving form of the linear Coriolis terms  
 are written:  
 \begin{eqnarray}  
 G_u^{fv} & = &  
 \frac{1}{\Delta x_c}  
 \overline{ \frac{f}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\  
 G_v^{fu} & = & -  
 \frac{1}{\Delta y_c}  
 \overline{ \frac{f}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j  
 \end{eqnarray}  
 Here, the Coriolis parameter $f$ is defined at vorticity (corner)  
 points.  
 \marginpar{$f$: {\bf fCoriG}}  
 \marginpar{$h_\zeta$: {\bf hFacZ}}  
   
 The potential enstrophy conserving form of the non-linear Coriolis  
 terms are written:  
 \begin{eqnarray}  
 G_u^{\zeta_3 v} & = &  
 \frac{1}{\Delta x_c}  
 \overline{ \frac{\zeta_3}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\  
 G_v^{\zeta_3 u} & = & -  
 \frac{1}{\Delta y_c}  
 \overline{ \frac{\zeta_3}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j  
 \end{eqnarray}  
 \marginpar{$\zeta_3$: {\bf vort3}}  
   
 The Coriolis terms can also be evaluated together and expressed in  
 terms of absolute vorticity $f+\zeta_3$. The potential enstrophy  
 conserving form using the absolute vorticity is written:  
 \begin{eqnarray}  
 G_u^{fv} + G_u^{\zeta_3 v} & = &  
 \frac{1}{\Delta x_c}  
 \overline{ \frac{f + \zeta_3}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i \\  
 G_v^{fu} + G_v^{\zeta_3 u} & = & -  
 \frac{1}{\Delta y_c}  
 \overline{ \frac{f + \zeta_3}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j  
 \end{eqnarray}  
   
 \marginpar{Run-time control needs to be added for these options} The  
 disctinction between using absolute vorticity or relative vorticity is  
 useful when constructing higher order advection schemes; monotone  
 advection of relative vorticity behaves differently to monotone  
 advection of absolute vorticity. Currently the choice of  
 relative/absolute vorticity, centered/upwind/high order advection is  
 available only through commented subroutine calls.  
   
 \fbox{ \begin{minipage}{4.25in}  
 {\em S/R MOM\_VI\_CORIOLIS} ({\em mom\_vi\_coriolis.F})  
   
 {\em S/R MOM\_VI\_U\_CORIOLIS} ({\em mom\_vi\_u\_coriolis.F})  
   
 {\em S/R MOM\_VI\_V\_CORIOLIS} ({\em mom\_vi\_v\_coriolis.F})  
   
 $G_u^{fv}$, $G_u^{\zeta_3 v}$: {\bf uCf} (local to {\em calc\_mom\_rhs.F})  
   
 $G_v^{fu}$, $G_v^{\zeta_3 u}$: {\bf vCf} (local to {\em calc\_mom\_rhs.F})  
 \end{minipage} }  
   
   
 \subsubsection{Shear terms}  
   
 The shear terms ($\zeta_2w$ and $\zeta_1w$) are are discretized to  
 guarantee that no spurious generation of kinetic energy is possible;  
 the horizontal gradient of Bernoulli function has to be consistent  
 with the vertical advection of shear:  
 \marginpar{N-H terms have not been tried!}  
 \begin{eqnarray}  
 G_u^{\zeta_2 w} & = &  
 \frac{1}{ {\cal A}_w \Delta r_f h_w } \overline{  
 \overline{ {\cal A}_c w }^i ( \delta_k u - \epsilon_{nh} \delta_j w )  
 }^k \\  
 G_v^{\zeta_1 w} & = &  
 \frac{1}{ {\cal A}_s \Delta r_f h_s } \overline{  
 \overline{ {\cal A}_c w }^i ( \delta_k u - \epsilon_{nh} \delta_j w )  
 }^k  
 \end{eqnarray}  
   
 \fbox{ \begin{minipage}{4.25in}  
 {\em S/R MOM\_VI\_U\_VERTSHEAR} ({\em mom\_vi\_u\_vertshear.F})  
   
 {\em S/R MOM\_VI\_V\_VERTSHEAR} ({\em mom\_vi\_v\_vertshear.F})  
   
 $G_u^{\zeta_2 w}$: {\bf uCf} (local to {\em calc\_mom\_rhs.F})  
   
 $G_v^{\zeta_1 w}$: {\bf vCf} (local to {\em calc\_mom\_rhs.F})  
 \end{minipage} }  
   
   
   
 \subsubsection{Gradient of Bernoulli function}  
   
 \begin{eqnarray}  
 G_u^{\partial_x B} & = &  
 \frac{1}{\Delta x_c} \delta_i ( \phi' + KE ) \\  
 G_v^{\partial_y B} & = &  
 \frac{1}{\Delta x_y} \delta_j ( \phi' + KE )  
 %G_w^{\partial_z B} & = &  
 %\frac{1}{\Delta r_c} h_c \delta_k ( \phi' + KE )  
 \end{eqnarray}  
   
 \fbox{ \begin{minipage}{4.25in}  
 {\em S/R MOM\_VI\_U\_GRAD\_KE} ({\em mom\_vi\_u\_grad\_ke.F})  
   
 {\em S/R MOM\_VI\_V\_GRAD\_KE} ({\em mom\_vi\_v\_grad\_ke.F})  
   
 $G_u^{\partial_x KE}$: {\bf uCf} (local to {\em calc\_mom\_rhs.F})  
   
 $G_v^{\partial_y KE}$: {\bf vCf} (local to {\em calc\_mom\_rhs.F})  
 \end{minipage} }  
   
   
   
 \subsubsection{Horizontal dissipation}  
   
 The horizontal divergence, a complimentary quantity to relative  
 vorticity, is used in parameterizing the Reynolds stresses and is  
 discretized:  
 \begin{equation}  
 D = \frac{1}{{\cal A}_c h_c} (  
   \delta_i \Delta y_g h_w u  
 + \delta_j \Delta x_g h_s v )  
 \end{equation}  
   
 \fbox{ \begin{minipage}{4.25in}  
 {\em S/R MOM\_VI\_CALC\_HDIV} ({\em mom\_vi\_calc\_hdiv.F})  
   
 $D$: {\bf hDiv} (local to {\em calc\_mom\_rhs.F})  
 \end{minipage} }  
   
   
 \subsubsection{Horizontal dissipation}  
   
 The following discretization of horizontal dissipation conserves  
 potential vorticity (thickness weighted relative vorticity) and  
 divergence and dissipates energy, enstrophy and divergence squared:  
 \begin{eqnarray}  
 G_u^{h-dissip} & = &  
   \frac{1}{\Delta x_c} \delta_i ( A_D D - A_{D4} D^*)  
 - \frac{1}{\Delta y_u h_w} \delta_j h_\zeta ( A_\zeta \zeta - A_{\zeta4} \zeta^* )  
 \\  
 G_v^{h-dissip} & = &  
   \frac{1}{\Delta x_v h_s} \delta_i h_\zeta ( A_\zeta \zeta - A_\zeta \zeta^* )  
 + \frac{1}{\Delta y_c} \delta_j ( A_D D - A_{D4} D^* )  
 \end{eqnarray}  
 where  
 \begin{eqnarray}  
 D^* & = & \frac{1}{{\cal A}_c h_c} (  
   \delta_i \Delta y_g h_w \nabla^2 u  
 + \delta_j \Delta x_g h_s \nabla^2 v ) \\  
 \zeta^* & = & \frac{1}{{\cal A}_\zeta} (  
   \delta_i \Delta y_c \nabla^2 v  
 - \delta_j \Delta x_c \nabla^2 u )  
 \end{eqnarray}  
   
 \fbox{ \begin{minipage}{4.25in}  
 {\em S/R MOM\_VI\_HDISSIP} ({\em mom\_vi\_hdissip.F})  
   
 $G_u^{h-dissip}$: {\bf uDiss} (local to {\em calc\_mom\_rhs.F})  
   
 $G_v^{h-dissip}$: {\bf vDiss} (local to {\em calc\_mom\_rhs.F})  
 \end{minipage} }  
   
   
 \subsubsection{Vertical dissipation}  
   
 Currently, this is exactly the same code as the flux form equations.  
 \begin{eqnarray}  
 G_u^{v-diss} & = &  
 \frac{1}{\Delta r_f h_w} \delta_k \tau_{13} \\  
 G_v^{v-diss} & = &  
 \frac{1}{\Delta r_f h_s} \delta_k \tau_{23}  
 \end{eqnarray}  
 represents the general discrete form of the vertical dissipation terms.  
   
 In the interior the vertical stresses are discretized:  
 \begin{eqnarray}  
 \tau_{13} & = & A_v \frac{1}{\Delta r_c} \delta_k u \\  
 \tau_{23} & = & A_v \frac{1}{\Delta r_c} \delta_k v  
 \end{eqnarray}  
   
 \fbox{ \begin{minipage}{4.25in}  
 {\em S/R MOM\_U\_RVISCLFUX} ({\em mom\_u\_rviscflux.F})  
   
 {\em S/R MOM\_V\_RVISCLFUX} ({\em mom\_v\_rviscflux.F})  
   
 $\tau_{13}$: {\bf urf} (local to {\em calc\_mom\_rhs.F})  
   
 $\tau_{23}$: {\bf vrf} (local to {\em calc\_mom\_rhs.F})  
 \end{minipage} }  

Legend:
Removed from v.1.1  
changed lines
  Added in v.1.19

  ViewVC Help
Powered by ViewVC 1.1.22