17 |
|
|
18 |
The finite volume method is used to discretize the equations in |
The finite volume method is used to discretize the equations in |
19 |
space. The expression ``finite volume'' actually has two meanings; one |
space. The expression ``finite volume'' actually has two meanings; one |
20 |
is the method of cut or instecting boundaries (shaved or lopped cells |
is the method of embedded or intersecting boundaries (shaved or lopped |
21 |
in our terminology) and the other is non-linear interpolation methods |
cells in our terminology) and the other is non-linear interpolation |
22 |
that can deal with non-smooth solutions such as shocks (i.e. flux |
methods that can deal with non-smooth solutions such as shocks |
23 |
limiters for advection). Both make use of the integral form of the |
(i.e. flux limiters for advection). Both make use of the integral form |
24 |
conservation laws to which the {\it weak solution} is a solution on |
of the conservation laws to which the {\it weak solution} is a |
25 |
each finite volume of (sub-domain). The weak solution can be |
solution on each finite volume of (sub-domain). The weak solution can |
26 |
constructed outof piece-wise constant elements or be |
be constructed out of piece-wise constant elements or be |
27 |
differentiable. The differentiable equations can not be satisfied by |
differentiable. The differentiable equations can not be satisfied by |
28 |
piece-wise constant functions. |
piece-wise constant functions. |
29 |
|
|
115 |
|
|
116 |
|
|
117 |
\subsection{Horizontal grid} |
\subsection{Horizontal grid} |
118 |
|
\label{sec:spatial_discrete_horizontal_grid} |
119 |
|
|
120 |
\begin{figure} |
\begin{figure} |
121 |
\begin{center} |
\begin{center} |