/[MITgcm]/manual/s_algorithm/text/spatial-discrete.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/spatial-discrete.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.4 by adcroft, Thu Aug 9 19:48:39 2001 UTC revision 1.7 by adcroft, Wed Sep 26 21:59:33 2001 UTC
# Line 8  method. This amounts to a grid-point met Line 8  method. This amounts to a grid-point met
8  centered finite difference) in the fluid interior but allows  centered finite difference) in the fluid interior but allows
9  boundaries to intersect a regular grid allowing a more accurate  boundaries to intersect a regular grid allowing a more accurate
10  representation of the position of the boundary. We treat the  representation of the position of the boundary. We treat the
11  horizontal and veritical directions as seperable and thus slightly  horizontal and veritical directions as seperable and differently.
 differently.  
12    
13  Initialization of grid data is controlled by subroutine {\em  \input{part2/notation}
 INI\_GRID} which in calls {\em INI\_VERTICAL\_GRID} to initialize the  
 vertical grid, and then either of {\em INI\_CARTESIAN\_GRID}, {\em  
 INI\_SPHERICAL\_POLAR\_GRID} or {\em INI\_CURV\-ILINEAR\_GRID} to  
 initialize the horizontal grid for cartesian, spherical-polar or  
 curvilinear coordinates respectively.  
   
 The reciprocals of all grid quantities are pre-calculated and this is  
 done in subroutine {\em INI\_MASKS\_ETC} which is called later by  
 subroutine {\em INITIALIZE\_FIXED}.  
   
 All grid descriptors are global arrays and stored in common blocks in  
 {\em GRID.h} and a generally declared as {\em \_RS}.  
   
 \fbox{ \begin{minipage}{4.75in}  
 {\em S/R INI\_GRID} ({\em model/src/ini\_grid.F})  
   
 {\em S/R INI\_MASKS\_ETC} ({\em model/src/ini\_masks\_etc.F})  
   
 grid data: ({\em model/inc/GRID.h})  
 \end{minipage} }  
14    
15    
16  \subsection{The finite volume method: finite volumes versus finite difference}  \subsection{The finite volume method: finite volumes versus finite difference}
# Line 88  directions simultaneously. Illustration Line 67  directions simultaneously. Illustration
67  \subsection{C grid staggering of variables}  \subsection{C grid staggering of variables}
68    
69  \begin{figure}  \begin{figure}
70  \centerline{ \resizebox{!}{2in}{ \includegraphics{part2/cgrid3d.eps}} }  \begin{center}
71    \resizebox{!}{2in}{ \includegraphics{part2/cgrid3d.eps}}
72    \end{center}
73  \caption{Three dimensional staggering of velocity components. This  \caption{Three dimensional staggering of velocity components. This
74  facilitates the natural discretization of the continuity and tracer  facilitates the natural discretization of the continuity and tracer
75  equations. }  equations. }
# Line 108  synonymous with tracer cells (they are o Line 89  synonymous with tracer cells (they are o
89    
90    
91    
92    \subsection{Grid initialization and data}
93    
94    Initialization of grid data is controlled by subroutine {\em
95    INI\_GRID} which in calls {\em INI\_VERTICAL\_GRID} to initialize the
96    vertical grid, and then either of {\em INI\_CARTESIAN\_GRID}, {\em
97    INI\_SPHERICAL\_POLAR\_GRID} or {\em INI\_CURV\-ILINEAR\_GRID} to
98    initialize the horizontal grid for cartesian, spherical-polar or
99    curvilinear coordinates respectively.
100    
101    The reciprocals of all grid quantities are pre-calculated and this is
102    done in subroutine {\em INI\_MASKS\_ETC} which is called later by
103    subroutine {\em INITIALIZE\_FIXED}.
104    
105    All grid descriptors are global arrays and stored in common blocks in
106    {\em GRID.h} and a generally declared as {\em \_RS}.
107    
108    \fbox{ \begin{minipage}{4.75in}
109    {\em S/R INI\_GRID} ({\em model/src/ini\_grid.F})
110    
111    {\em S/R INI\_MASKS\_ETC} ({\em model/src/ini\_masks\_etc.F})
112    
113    grid data: ({\em model/inc/GRID.h})
114    \end{minipage} }
115    
116    
117  \subsection{Horizontal grid}  \subsection{Horizontal grid}
118    
119  \begin{figure}  \begin{figure}
120  \centerline{ \begin{tabular}{cc}  \begin{center}
121    \begin{tabular}{cc}
122    \raisebox{1.5in}{a)}\resizebox{!}{2in}{ \includegraphics{part2/hgrid-Ac.eps}}    \raisebox{1.5in}{a)}\resizebox{!}{2in}{ \includegraphics{part2/hgrid-Ac.eps}}
123  & \raisebox{1.5in}{b)}\resizebox{!}{2in}{ \includegraphics{part2/hgrid-Az.eps}}  & \raisebox{1.5in}{b)}\resizebox{!}{2in}{ \includegraphics{part2/hgrid-Az.eps}}
124  \\  \\
125    \raisebox{1.5in}{c)}\resizebox{!}{2in}{ \includegraphics{part2/hgrid-Au.eps}}    \raisebox{1.5in}{c)}\resizebox{!}{2in}{ \includegraphics{part2/hgrid-Au.eps}}
126  & \raisebox{1.5in}{d)}\resizebox{!}{2in}{ \includegraphics{part2/hgrid-Av.eps}}  & \raisebox{1.5in}{d)}\resizebox{!}{2in}{ \includegraphics{part2/hgrid-Av.eps}}
127  \end{tabular} }  \end{tabular}
128    \end{center}
129  \caption{  \caption{
130  Staggering of horizontal grid descriptors (lengths and areas). The  Staggering of horizontal grid descriptors (lengths and areas). The
131  grid lines indicate the tracer cell boundaries and are the reference  grid lines indicate the tracer cell boundaries and are the reference
# Line 310  other grids, the horizontal grid descrip Line 317  other grids, the horizontal grid descrip
317  \subsection{Vertical grid}  \subsection{Vertical grid}
318    
319  \begin{figure}  \begin{figure}
320  \centerline{ \begin{tabular}{cc}  \begin{center}
321      \begin{tabular}{cc}
322    \raisebox{4in}{a)} \resizebox{!}{4in}{    \raisebox{4in}{a)} \resizebox{!}{4in}{
323    \includegraphics{part2/vgrid-cellcentered.eps}} & \raisebox{4in}{b)}    \includegraphics{part2/vgrid-cellcentered.eps}} & \raisebox{4in}{b)}
324    \resizebox{!}{4in}{ \includegraphics{part2/vgrid-accurate.eps}}    \resizebox{!}{4in}{ \includegraphics{part2/vgrid-accurate.eps}}
325  \end{tabular} }  \end{tabular}
326    \end{center}
327  \caption{Two versions of the vertical grid. a) The cell centered  \caption{Two versions of the vertical grid. a) The cell centered
328  approach where the interface depths are specified and the tracer  approach where the interface depths are specified and the tracer
329  points centered in between the interfaces. b) The interface centered  points centered in between the interfaces. b) The interface centered
# Line 379  $\Delta r_c^{-1}$: {\bf RECIP\_DRc} ({\e Line 388  $\Delta r_c^{-1}$: {\bf RECIP\_DRc} ({\e
388  \subsection{Topography: partially filled cells}  \subsection{Topography: partially filled cells}
389    
390  \begin{figure}  \begin{figure}
391  \centerline{  \begin{center}
392  \resizebox{4.5in}{!}{\includegraphics{part2/vgrid-xz.eps}}  \resizebox{4.5in}{!}{\includegraphics{part2/vgrid-xz.eps}}
393  }  \end{center}
394  \caption{  \caption{
395  A schematic of the x-r plane showing the location of the  A schematic of the x-r plane showing the location of the
396  non-dimensional fractions $h_c$ and $h_w$. The physical thickness of a  non-dimensional fractions $h_c$ and $h_w$. The physical thickness of a
# Line 446  $h_s^{-1}$: {\bf RECIP\_hFacS} ({\em GRI Line 455  $h_s^{-1}$: {\bf RECIP\_hFacS} ({\em GRI
455  \end{minipage} }  \end{minipage} }
456    
457    
458  \subsection{Continuity and horizontal pressure gradient terms}  \section{Continuity and horizontal pressure gradient terms}
459    
460  The core algorithm is based on the ``C grid'' discretization of the  The core algorithm is based on the ``C grid'' discretization of the
461  continuity equation which can be summarized as:  continuity equation which can be summarized as:
462  \begin{eqnarray}  \begin{eqnarray}
463  \partial_t u + \frac{1}{\Delta x_c} \delta_i \left. \frac{ \partial \Phi}{\partial r}\right|_{s} \eta + \frac{\epsilon_{nh}}{\Delta x_c} \delta_i \Phi_{nh}' & = & G_u - \frac{1}{\Delta x_c} \delta_i \Phi_h' \\  \partial_t u + \frac{1}{\Delta x_c} \delta_i \left. \frac{ \partial \Phi}{\partial r}\right|_{s} \eta + \frac{\epsilon_{nh}}{\Delta x_c} \delta_i \Phi_{nh}' & = & G_u - \frac{1}{\Delta x_c} \delta_i \Phi_h' \label{eq:discrete-momu} \\
464  \partial_t v + \frac{1}{\Delta y_c} \delta_j \left. \frac{ \partial \Phi}{\partial r}\right|_{s} \eta + \frac{\epsilon_{nh}}{\Delta y_c} \delta_j \Phi_{nh}' & = & G_v - \frac{1}{\Delta y_c} \delta_j \Phi_h' \\  \partial_t v + \frac{1}{\Delta y_c} \delta_j \left. \frac{ \partial \Phi}{\partial r}\right|_{s} \eta + \frac{\epsilon_{nh}}{\Delta y_c} \delta_j \Phi_{nh}' & = & G_v - \frac{1}{\Delta y_c} \delta_j \Phi_h' \label{eq:discrete-momv} \\
465  \epsilon_{nh} \left( \partial_t w + \frac{1}{\Delta r_c} \delta_k \Phi_{nh}' \right) & = & \epsilon_{nh} G_w + \overline{b}^k - \frac{1}{\Delta r_c} \delta_k \Phi_{h}' \\  \epsilon_{nh} \left( \partial_t w + \frac{1}{\Delta r_c} \delta_k \Phi_{nh}' \right) & = & \epsilon_{nh} G_w + \overline{b}^k - \frac{1}{\Delta r_c} \delta_k \Phi_{h}' \label{eq:discrete-momw} \\
466  \delta_i \Delta y_g \Delta r_f h_w u +  \delta_i \Delta y_g \Delta r_f h_w u +
467  \delta_j \Delta x_g \Delta r_f h_s v +  \delta_j \Delta x_g \Delta r_f h_s v +
468  \delta_k {\cal A}_c w & = & {\cal A}_c \delta_k (P-E)_{r=0}  \delta_k {\cal A}_c w & = & {\cal A}_c \delta_k (P-E)_{r=0}
# Line 476  A}_c$.  The factors $h_w$ and $h_s$ are Line 485  A}_c$.  The factors $h_w$ and $h_s$ are
485  The last equation, the discrete continuity equation, can be summed in  The last equation, the discrete continuity equation, can be summed in
486  the vertical to yeild the free-surface equation:  the vertical to yeild the free-surface equation:
487  \begin{equation}  \begin{equation}
488  {\cal A}_c \partial_t \eta + \delta_i \sum_k \Delta y_g \Delta r_f h_w u + \delta_j \sum_k \Delta x_g \Delta r_f h_s v =  {\cal A}_c \partial_t \eta + \delta_i \sum_k \Delta y_g \Delta r_f h_w
489  {\cal A}_c(P-E)_{r=0}  u + \delta_j \sum_k \Delta x_g \Delta r_f h_s v = {\cal
490    A}_c(P-E)_{r=0} \label{eq:discrete-freesurface}
491  \end{equation}  \end{equation}
492  The source term $P-E$ on the rhs of continuity accounts for the local  The source term $P-E$ on the rhs of continuity accounts for the local
493  addition of volume due to excess precipitation and run-off over  addition of volume due to excess precipitation and run-off over
494  evaporation and only enters the top-level of the {\em ocean} model.  evaporation and only enters the top-level of the {\em ocean} model.
495    
496  \subsection{Hydrostatic balance}  \section{Hydrostatic balance}
497    
498  The vertical momentum equation has the hydrostatic or  The vertical momentum equation has the hydrostatic or
499  quasi-hydrostatic balance on the right hand side. This discretization  quasi-hydrostatic balance on the right hand side. This discretization
# Line 497  discretized: Line 507  discretized:
507  \begin{equation}  \begin{equation}
508  \epsilon_{nh} \partial_t w  \epsilon_{nh} \partial_t w
509  + g \overline{\rho'}^k + \frac{1}{\Delta z} \delta_k \Phi_h' = \ldots  + g \overline{\rho'}^k + \frac{1}{\Delta z} \delta_k \Phi_h' = \ldots
510    \label{eq:discrete_hydro_ocean}
511  \end{equation}  \end{equation}
512    
513  In the atmosphere, using p-coordinates, hydrostatic balance is  In the atmosphere, using p-coordinates, hydrostatic balance is
514  discretized:  discretized:
515  \begin{equation}  \begin{equation}
516  \overline{\theta'}^k + \frac{1}{\Delta \Pi} \delta_k \Phi_h' = 0  \overline{\theta'}^k + \frac{1}{\Delta \Pi} \delta_k \Phi_h' = 0
517    \label{eq:discrete_hydro_atmos}
518  \end{equation}  \end{equation}
519  where $\Delta \Pi$ is the difference in Exner function between the  where $\Delta \Pi$ is the difference in Exner function between the
520  pressure points. The non-hydrostatic equations are not available in  pressure points. The non-hydrostatic equations are not available in

Legend:
Removed from v.1.4  
changed lines
  Added in v.1.7

  ViewVC Help
Powered by ViewVC 1.1.22