/[MITgcm]/manual/s_algorithm/text/spatial-discrete.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/spatial-discrete.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.5 by adcroft, Thu Aug 9 20:45:27 2001 UTC revision 1.6 by adcroft, Tue Sep 25 20:13:42 2001 UTC
# Line 454  $h_s^{-1}$: {\bf RECIP\_hFacS} ({\em GRI Line 454  $h_s^{-1}$: {\bf RECIP\_hFacS} ({\em GRI
454  The core algorithm is based on the ``C grid'' discretization of the  The core algorithm is based on the ``C grid'' discretization of the
455  continuity equation which can be summarized as:  continuity equation which can be summarized as:
456  \begin{eqnarray}  \begin{eqnarray}
457  \partial_t u + \frac{1}{\Delta x_c} \delta_i \left. \frac{ \partial \Phi}{\partial r}\right|_{s} \eta + \frac{\epsilon_{nh}}{\Delta x_c} \delta_i \Phi_{nh}' & = & G_u - \frac{1}{\Delta x_c} \delta_i \Phi_h' \\  \partial_t u + \frac{1}{\Delta x_c} \delta_i \left. \frac{ \partial \Phi}{\partial r}\right|_{s} \eta + \frac{\epsilon_{nh}}{\Delta x_c} \delta_i \Phi_{nh}' & = & G_u - \frac{1}{\Delta x_c} \delta_i \Phi_h' \label{eq:discrete-momu} \\
458  \partial_t v + \frac{1}{\Delta y_c} \delta_j \left. \frac{ \partial \Phi}{\partial r}\right|_{s} \eta + \frac{\epsilon_{nh}}{\Delta y_c} \delta_j \Phi_{nh}' & = & G_v - \frac{1}{\Delta y_c} \delta_j \Phi_h' \\  \partial_t v + \frac{1}{\Delta y_c} \delta_j \left. \frac{ \partial \Phi}{\partial r}\right|_{s} \eta + \frac{\epsilon_{nh}}{\Delta y_c} \delta_j \Phi_{nh}' & = & G_v - \frac{1}{\Delta y_c} \delta_j \Phi_h' \label{eq:discrete-momv} \\
459  \epsilon_{nh} \left( \partial_t w + \frac{1}{\Delta r_c} \delta_k \Phi_{nh}' \right) & = & \epsilon_{nh} G_w + \overline{b}^k - \frac{1}{\Delta r_c} \delta_k \Phi_{h}' \\  \epsilon_{nh} \left( \partial_t w + \frac{1}{\Delta r_c} \delta_k \Phi_{nh}' \right) & = & \epsilon_{nh} G_w + \overline{b}^k - \frac{1}{\Delta r_c} \delta_k \Phi_{h}' \label{eq:discrete-momw} \\
460  \delta_i \Delta y_g \Delta r_f h_w u +  \delta_i \Delta y_g \Delta r_f h_w u +
461  \delta_j \Delta x_g \Delta r_f h_s v +  \delta_j \Delta x_g \Delta r_f h_s v +
462  \delta_k {\cal A}_c w & = & {\cal A}_c \delta_k (P-E)_{r=0}  \delta_k {\cal A}_c w & = & {\cal A}_c \delta_k (P-E)_{r=0}
# Line 479  A}_c$.  The factors $h_w$ and $h_s$ are Line 479  A}_c$.  The factors $h_w$ and $h_s$ are
479  The last equation, the discrete continuity equation, can be summed in  The last equation, the discrete continuity equation, can be summed in
480  the vertical to yeild the free-surface equation:  the vertical to yeild the free-surface equation:
481  \begin{equation}  \begin{equation}
482  {\cal A}_c \partial_t \eta + \delta_i \sum_k \Delta y_g \Delta r_f h_w u + \delta_j \sum_k \Delta x_g \Delta r_f h_s v =  {\cal A}_c \partial_t \eta + \delta_i \sum_k \Delta y_g \Delta r_f h_w
483  {\cal A}_c(P-E)_{r=0}  u + \delta_j \sum_k \Delta x_g \Delta r_f h_s v = {\cal
484    A}_c(P-E)_{r=0} \label{eq:discrete-freesurface}
485  \end{equation}  \end{equation}
486  The source term $P-E$ on the rhs of continuity accounts for the local  The source term $P-E$ on the rhs of continuity accounts for the local
487  addition of volume due to excess precipitation and run-off over  addition of volume due to excess precipitation and run-off over
# Line 500  discretized: Line 501  discretized:
501  \begin{equation}  \begin{equation}
502  \epsilon_{nh} \partial_t w  \epsilon_{nh} \partial_t w
503  + g \overline{\rho'}^k + \frac{1}{\Delta z} \delta_k \Phi_h' = \ldots  + g \overline{\rho'}^k + \frac{1}{\Delta z} \delta_k \Phi_h' = \ldots
504    \label{eq:discrete_hydro_ocean}
505  \end{equation}  \end{equation}
506    
507  In the atmosphere, using p-coordinates, hydrostatic balance is  In the atmosphere, using p-coordinates, hydrostatic balance is
508  discretized:  discretized:
509  \begin{equation}  \begin{equation}
510  \overline{\theta'}^k + \frac{1}{\Delta \Pi} \delta_k \Phi_h' = 0  \overline{\theta'}^k + \frac{1}{\Delta \Pi} \delta_k \Phi_h' = 0
511    \label{eq:discrete_hydro_atmos}
512  \end{equation}  \end{equation}
513  where $\Delta \Pi$ is the difference in Exner function between the  where $\Delta \Pi$ is the difference in Exner function between the
514  pressure points. The non-hydrostatic equations are not available in  pressure points. The non-hydrostatic equations are not available in

Legend:
Removed from v.1.5  
changed lines
  Added in v.1.6

  ViewVC Help
Powered by ViewVC 1.1.22