/[MITgcm]/manual/s_algorithm/text/shap.tex
ViewVC logotype

Annotation of /manual/s_algorithm/text/shap.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.7 - (hide annotations) (download) (as text)
Mon Aug 30 23:09:18 2010 UTC (14 years, 10 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint01, HEAD
Changes since 1.6: +2 -2 lines
File MIME type: application/x-tex
clean-up latex built:
 (remove multiple definition of label; fix missing reference; replace
  non-standard latex stuff; ...)

1 jmc 1.7 % $Header: /u/gcmpack/manual/s_algorithm/text/shap.tex,v 1.6 2006/04/06 00:38:17 molod Exp $
2 adcroft 1.2 % $Name: $
3 adcroft 1.1
4 adcroft 1.2 \section{Shapiro Filter}
5 jmc 1.7 \label{sec:shapiro-filter}
6 adcroft 1.1
7 jmc 1.5 The Shapiro filter \cite{Shapiro_70} is a high order horizontal
8 adcroft 1.1 filter that efficiently remove small scale grid noise
9     without affecting the physical structures of a field.
10     It is applied at the end of the time step %(the\_correction\_step),
11     on both velocity and tracer fields.
12    
13     Three different space operators are considered here (S1,S2 and S4).
14     They differs essentially by the sequence of derivative in
15     both X and Y directions. Consequently they show different
16     damping response function specially in the diagonal directions
17     X+Y and X-Y.
18    
19     Space derivatives can be computed in the real space,
20     taken into account the grid spacing.
21     Alternatively, a pure computational filter can be defined,
22     using pure numerical differences and ignoring
23     grid spacing.
24     This later form is stable whatever the grid is, and therefore
25 adcroft 1.4 specially useful for highly anisotropic grid such as spherical
26 adcroft 1.1 coordinate grid.
27     A damping time-scale parameter $\tau_{shap}$
28     defines the strength of the filter damping.
29    
30     The 3 computational filter operators are :
31     $$
32     \mathrm{S1c:}\hspace{2cm}
33     [1 - 1/2 \frac{\Delta t}{\tau_{shap}}
34     \{ (\frac{1}{4}\delta_{ii})^n
35     + (\frac{1}{4}\delta_{jj})^n \} ]
36     $$
37    
38     $$
39     \mathrm{S2c:}\hspace{2cm}
40     [1 - \frac{\Delta t}{\tau_{shap}}
41     \{ \frac{1}{8} (\delta_{ii} + \delta_{jj}) \}^n]
42     $$
43    
44     $$
45     \mathrm{S4c:}\hspace{2cm}
46     [1 - \frac{\Delta t}{\tau_{shap}} (\frac{1}{4}\delta_{ii})^n]
47     [1 - \frac{\Delta t}{\tau_{shap}} (\frac{1}{4}\delta_{jj})^n]
48     $$
49    
50 cnh 1.3 In addition, the S2 operator can easily be extended to
51 adcroft 1.1 a physical space filter:
52     $$
53     \mathrm{S2g:}\hspace{2cm}
54     [1 - \frac{\Delta t}{\tau_{shap}}
55     \{ \frac{L_{shap}^2}{8} \overline{\nabla}^2 \}^n]
56     $$
57    
58 cnh 1.3 with the Laplacian operator $\overline{\nabla}^2 $
59 adcroft 1.1 and a length scale parameter $L_{shap}$.
60     The stability of this S2g filter requires
61     $L_{shap} < \mathrm{Min}^{(Global)}(\Delta x,\Delta y)$.
62    
63     \marginpar{Add Response functions and figures}
64 molod 1.6
65     \subsection{SHAP Diagnostics}
66     \label{sec:pkg:shap_filt:diagnostics}
67    
68     \begin{verbatim}
69    
70     ------------------------------------------------------------------------
71     <-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)
72     ------------------------------------------------------------------------
73     SHAP_dT | 5 |SM MR |K/s |Temperature Tendency due to Shapiro Filter
74     SHAP_dS | 5 |SM MR |g/kg/s |Specific Humidity Tendency due to Shapiro Filter
75     SHAP_dU | 5 |UU 148MR |m/s^2 |Zonal Wind Tendency due to Shapiro Filter
76     SHAP_dV | 5 |VV 147MR |m/s^2 |Meridional Wind Tendency due to Shapiro Filter
77     \end{verbatim}

  ViewVC Help
Powered by ViewVC 1.1.22