/[MITgcm]/manual/s_algorithm/text/shap.tex
ViewVC logotype

Annotation of /manual/s_algorithm/text/shap.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.2 - (hide annotations) (download) (as text)
Thu Aug 9 19:48:39 2001 UTC (23 years, 11 months ago) by adcroft
Branch: MAIN
Changes since 1.1: +3 -3 lines
File MIME type: application/x-tex
Moved things around for more sections fewer subsections
Split spatial-discrete.tex into several smaller files.

1 adcroft 1.2 % $Header: /u/gcmpack/mitgcmdoc/part2/shap.tex,v 1.1.1.1 2001/08/08 16:15:22 adcroft Exp $
2     % $Name: $
3 adcroft 1.1
4 adcroft 1.2 \section{Shapiro Filter}
5 adcroft 1.1
6     The Shapiro filter (Shapiro 1970, 1975) is a high order horizontal
7     filter that efficiently remove small scale grid noise
8     without affecting the physical structures of a field.
9     It is applied at the end of the time step %(the\_correction\_step),
10     on both velocity and tracer fields.
11    
12     Three different space operators are considered here (S1,S2 and S4).
13     They differs essentially by the sequence of derivative in
14     both X and Y directions. Consequently they show different
15     damping response function specially in the diagonal directions
16     X+Y and X-Y.
17    
18     Space derivatives can be computed in the real space,
19     taken into account the grid spacing.
20     Alternatively, a pure computational filter can be defined,
21     using pure numerical differences and ignoring
22     grid spacing.
23     This later form is stable whatever the grid is, and therefore
24     specially useful for highly anisotrope grid such as spherical
25     coordinate grid.
26     A damping time-scale parameter $\tau_{shap}$
27     defines the strength of the filter damping.
28    
29     The 3 computational filter operators are :
30     $$
31     \mathrm{S1c:}\hspace{2cm}
32     [1 - 1/2 \frac{\Delta t}{\tau_{shap}}
33     \{ (\frac{1}{4}\delta_{ii})^n
34     + (\frac{1}{4}\delta_{jj})^n \} ]
35     $$
36    
37     $$
38     \mathrm{S2c:}\hspace{2cm}
39     [1 - \frac{\Delta t}{\tau_{shap}}
40     \{ \frac{1}{8} (\delta_{ii} + \delta_{jj}) \}^n]
41     $$
42    
43     $$
44     \mathrm{S4c:}\hspace{2cm}
45     [1 - \frac{\Delta t}{\tau_{shap}} (\frac{1}{4}\delta_{ii})^n]
46     [1 - \frac{\Delta t}{\tau_{shap}} (\frac{1}{4}\delta_{jj})^n]
47     $$
48    
49     In addition, the S2 operator can easly be extended to
50     a physical space filter:
51     $$
52     \mathrm{S2g:}\hspace{2cm}
53     [1 - \frac{\Delta t}{\tau_{shap}}
54     \{ \frac{L_{shap}^2}{8} \overline{\nabla}^2 \}^n]
55     $$
56    
57     with the Laplacien operator $\overline{\nabla}^2 $
58     and a length scale parameter $L_{shap}$.
59     The stability of this S2g filter requires
60     $L_{shap} < \mathrm{Min}^{(Global)}(\Delta x,\Delta y)$.
61    
62     \marginpar{Add Response functions and figures}

  ViewVC Help
Powered by ViewVC 1.1.22