--- manual/s_algorithm/text/notation.tex 2001/08/08 16:15:21 1.1 +++ manual/s_algorithm/text/notation.tex 2011/05/04 22:42:48 1.8 @@ -1,27 +1,42 @@ -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_algorithm/text/notation.tex,v 1.1 2001/08/08 16:15:21 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_algorithm/text/notation.tex,v 1.8 2011/05/04 22:42:48 jmc Exp $ % $Name: $ -\section{Notations} +\section{Notation} -The notations we use to discribe the discrete formulation -of the model are summarised hereafter:\\ +Because of the particularity of the vertical direction in stratified fluid +context, in this chapter, the vector notations are mostly used +for the horizontal component: +the horizontal part of a vector is simply written +$\vec{\bf v}$ (instead of ${\bf v_h}$ or $\vec{\mathbf{v}}_{h}$ in chaper 1) +and a 3.D vector is simply written $\vec{v}$ (instead of $\vec{\mathbf{v}}$ +in chapter 1). + +The notations we use to describe the discrete formulation +of the model are summarized hereafter:\\ general notation: \\ $\Delta x, \Delta y, \Delta r$ grid spacing in X,Y,R directions. -\\ $A_o$ : Area of the face orthogonal to "o" direction (o=u,v,w ...). -\\ ${\cal V}_u , {\cal V}_v , {\cal V}_v , {\cal V}_\theta$ : +\\ $A_c,A_w,A_s,A_{\zeta}$ : +horizontal area of a grid cell surrounding $\theta,u,v,\zeta$ point. +\\ ${\cal V}_u , {\cal V}_v , {\cal V}_w , {\cal V}_\theta$ : Volume of the grid box surrounding $u,v,w,\theta$ point; \\ $i,j,k$ : current index relative to X,Y,R directions; \\basic operator: -\\ $\delta_i $ : $\delta_i \Phi = \Phi_{i+1} - \Phi_i $ -\\ $\overline{~}i$ : $\overline{\Phi}^i = ( \Phi_{i+1} + \Phi_i ) / 2 $ +\\ $\delta_i $ : $\delta_i \Phi = \Phi_{i+1/2} - \Phi_{i-1/2} $ +\label{eq:delta_i} +\\ $~^{-i}$ : $\overline{\Phi}^i = ( \Phi_{i+1/2} + \Phi_{i-1/2} ) / 2 $ +\label{eq:bar_i} \\ $\delta_x $ : $\delta_x \Phi = \frac{1}{\Delta x} \delta_i \Phi $ +\label{eq:delta_x} \\ -\\ $\overline{\nabla}$ = gradient operator : +\\ $\overline{\nabla}$ = horizontal gradient operator : $\overline{\nabla} \Phi = \{ \delta_x \Phi , \delta_y \Phi \}$ -\\ $\overline{\nabla} \cdot$ = divergence operator : +\label{eq:d_grad} +\\ $\overline{\nabla} \cdot$ = horizontal divergence operator : $\overline{\nabla}\cdot \vec{\mathrm{f}} = -\frac{1}{\cal V} \{ \delta_i A_x \mathrm{f}_x - + \delta_j A_y \mathrm{f}_y \} $ -\\ $\overline{\nabla}^2 $ = Laplacien operator : +\frac{1}{\cal A} \{ \delta_i \Delta y \, \mathrm{f}_x + + \delta_j \Delta x \, \mathrm{f}_y \} $ +\label{eq:d_div} +\\ $\overline{\nabla}^2 $ = horizontal Laplacian operator : $ \overline{\nabla}^2 \Phi = \overline{\nabla}\cdot \overline{\nabla}\Phi $ +\label{eq:d_lap}