/[MITgcm]/manual/s_algorithm/text/notation.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/notation.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.1.1.1 by adcroft, Wed Aug 8 16:15:21 2001 UTC revision 1.8 by jmc, Wed May 4 22:42:48 2011 UTC
# Line 1  Line 1 
1  % $Header$  % $Header$
2  % $Name$  % $Name$
3    
4  \section{Notations}  \section{Notation}
5    
6  The notations we use to discribe the discrete formulation  Because of the particularity of the vertical direction in stratified fluid
7  of the model are summarised hereafter:\\  context, in this chapter, the vector notations are mostly used
8    for the horizontal component:
9    the horizontal part of a vector is simply written
10    $\vec{\bf v}$ (instead of ${\bf v_h}$ or $\vec{\mathbf{v}}_{h}$ in chaper 1)
11    and a 3.D vector is simply written $\vec{v}$ (instead of $\vec{\mathbf{v}}$
12    in chapter 1).
13    
14    The notations we use to describe the discrete formulation
15    of the model are summarized hereafter:\\
16  general notation:  general notation:
17  \\ $\Delta x, \Delta y, \Delta r$ grid spacing in X,Y,R directions.  \\ $\Delta x, \Delta y, \Delta r$ grid spacing in X,Y,R directions.
18  \\ $A_o$ : Area of the face orthogonal to "o" direction (o=u,v,w ...).  \\ $A_c,A_w,A_s,A_{\zeta}$ :
19  \\ ${\cal V}_u , {\cal V}_v , {\cal V}_v , {\cal V}_\theta$ :  horizontal area of a grid cell surrounding $\theta,u,v,\zeta$ point.
20    \\ ${\cal V}_u , {\cal V}_v , {\cal V}_w , {\cal V}_\theta$ :
21  Volume of the grid box surrounding $u,v,w,\theta$ point;  Volume of the grid box surrounding $u,v,w,\theta$ point;
22  \\ $i,j,k$ : current index relative to X,Y,R directions;  \\ $i,j,k$ : current index relative to X,Y,R directions;
23  \\basic operator:  \\basic operator:
24  \\ $\delta_i $ : $\delta_i \Phi = \Phi_{i+1} - \Phi_i $  \\ $\delta_i $ : $\delta_i \Phi = \Phi_{i+1/2} - \Phi_{i-1/2} $
25  \\ $\overline{~}i$ : $\overline{\Phi}^i = ( \Phi_{i+1} + \Phi_i ) / 2 $  \label{eq:delta_i}
26    \\ $~^{-i}$ : $\overline{\Phi}^i = ( \Phi_{i+1/2} + \Phi_{i-1/2} ) / 2 $
27    \label{eq:bar_i}
28  \\ $\delta_x $ : $\delta_x \Phi = \frac{1}{\Delta x} \delta_i \Phi $  \\ $\delta_x $ : $\delta_x \Phi = \frac{1}{\Delta x} \delta_i \Phi $
29    \label{eq:delta_x}
30  \\  \\
31  \\ $\overline{\nabla}$ = gradient operator :    \\ $\overline{\nabla}$ = horizontal gradient operator :  
32  $\overline{\nabla} \Phi = \{ \delta_x \Phi , \delta_y \Phi \}$  $\overline{\nabla} \Phi = \{ \delta_x \Phi , \delta_y \Phi \}$
33  \\ $\overline{\nabla} \cdot$ = divergence operator :    \label{eq:d_grad}
34    \\ $\overline{\nabla} \cdot$ = horizontal divergence operator :  
35  $\overline{\nabla}\cdot \vec{\mathrm{f}}  =  $\overline{\nabla}\cdot \vec{\mathrm{f}}  =
36  \frac{1}{\cal V} \{ \delta_i A_x \mathrm{f}_x  \frac{1}{\cal A} \{ \delta_i \Delta y \, \mathrm{f}_x
37                    + \delta_j A_y \mathrm{f}_y \} $                    + \delta_j \Delta x \, \mathrm{f}_y \} $
38  \\ $\overline{\nabla}^2 $ = Laplacien operator :  \label{eq:d_div}
39    \\ $\overline{\nabla}^2 $ = horizontal Laplacian operator :
40  $ \overline{\nabla}^2 \Phi =  $ \overline{\nabla}^2 \Phi =
41     \overline{\nabla}\cdot \overline{\nabla}\Phi $     \overline{\nabla}\cdot \overline{\nabla}\Phi $
42    \label{eq:d_lap}

Legend:
Removed from v.1.1.1.1  
changed lines
  Added in v.1.8

  ViewVC Help
Powered by ViewVC 1.1.22