/[MITgcm]/manual/s_algorithm/text/notation.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/notation.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.4 by adcroft, Thu Aug 9 20:45:27 2001 UTC revision 1.6 by cnh, Thu Oct 25 18:36:53 2001 UTC
# Line 3  Line 3 
3    
4  \subsection{Notation}  \subsection{Notation}
5    
6  The notations we use to discribe the discrete formulation  The notations we use to describe the discrete formulation
7  of the model are summarised hereafter:\\  of the model are summarized hereafter:\\
8  general notation:  general notation:
9  \\ $\Delta x, \Delta y, \Delta r$ grid spacing in X,Y,R directions.  \\ $\Delta x, \Delta y, \Delta r$ grid spacing in X,Y,R directions.
10  \\ $A_o$ : Area of the face orthogonal to "o" direction (o=u,v,w ...).  \\ $A_o$ : Area of the face orthogonal to "o" direction (o=u,v,w ...).
# Line 13  Volume of the grid box surrounding $u,v, Line 13  Volume of the grid box surrounding $u,v,
13  \\ $i,j,k$ : current index relative to X,Y,R directions;  \\ $i,j,k$ : current index relative to X,Y,R directions;
14  \\basic operator:  \\basic operator:
15  \\ $\delta_i $ : $\delta_i \Phi = \Phi_{i+1/2} - \Phi_{i-1/2} $  \\ $\delta_i $ : $\delta_i \Phi = \Phi_{i+1/2} - \Phi_{i-1/2} $
16    \label{eq:delta_i}
17  \\ $\overline{~}i$ : $\overline{\Phi}^i = ( \Phi_{i+1/2} + \Phi_{i-1/2} ) / 2 $  \\ $\overline{~}i$ : $\overline{\Phi}^i = ( \Phi_{i+1/2} + \Phi_{i-1/2} ) / 2 $
18    \label{eq:bar_i}
19  \\ $\delta_x $ : $\delta_x \Phi = \frac{1}{\Delta x} \delta_i \Phi $  \\ $\delta_x $ : $\delta_x \Phi = \frac{1}{\Delta x} \delta_i \Phi $
20    \label{eq:delta_x}
21  \\  \\
22  \\ $\overline{\nabla}$ = gradient operator :    \\ $\overline{\nabla}$ = gradient operator :  
23  $\overline{\nabla} \Phi = \{ \delta_x \Phi , \delta_y \Phi \}$  $\overline{\nabla} \Phi = \{ \delta_x \Phi , \delta_y \Phi \}$
24    \label{eq:d_grad}
25  \\ $\overline{\nabla} \cdot$ = divergence operator :    \\ $\overline{\nabla} \cdot$ = divergence operator :  
26  $\overline{\nabla}\cdot \vec{\mathrm{f}}  =  $\overline{\nabla}\cdot \vec{\mathrm{f}}  =
27  \frac{1}{\cal A} \{ \delta_i \Delta y \mathrm{f}_x  \frac{1}{\cal A} \{ \delta_i \Delta y \mathrm{f}_x
28                    + \delta_j \Delta x \mathrm{f}_y \} $                    + \delta_j \Delta x \mathrm{f}_y \} $
29  \\ $\overline{\nabla}^2 $ = Laplacien operator :  \label{eq:d_div}
30    \\ $\overline{\nabla}^2 $ = Laplacian operator :
31  $ \overline{\nabla}^2 \Phi =  $ \overline{\nabla}^2 \Phi =
32     \overline{\nabla}\cdot \overline{\nabla}\Phi $     \overline{\nabla}\cdot \overline{\nabla}\Phi $
33    \label{eq:d_lap}

Legend:
Removed from v.1.4  
changed lines
  Added in v.1.6

  ViewVC Help
Powered by ViewVC 1.1.22