1 |
% $Header$ |
% $Header$ |
2 |
% $Name$ |
% $Name$ |
3 |
|
|
4 |
\section{Notations} |
\subsection{Notation} |
5 |
|
|
6 |
The notations we use to discribe the discrete formulation |
The notations we use to describe the discrete formulation |
7 |
of the model are summarised hereafter:\\ |
of the model are summarized hereafter:\\ |
8 |
general notation: |
general notation: |
9 |
\\ $\Delta x, \Delta y, \Delta r$ grid spacing in X,Y,R directions. |
\\ $\Delta x, \Delta y, \Delta r$ grid spacing in X,Y,R directions. |
10 |
\\ $A_o$ : Area of the face orthogonal to "o" direction (o=u,v,w ...). |
\\ $A_o$ : Area of the face orthogonal to "o" direction (o=u,v,w ...). |
12 |
Volume of the grid box surrounding $u,v,w,\theta$ point; |
Volume of the grid box surrounding $u,v,w,\theta$ point; |
13 |
\\ $i,j,k$ : current index relative to X,Y,R directions; |
\\ $i,j,k$ : current index relative to X,Y,R directions; |
14 |
\\basic operator: |
\\basic operator: |
15 |
\\ $\delta_i $ : $\delta_i \Phi = \Phi_{i+1} - \Phi_i $ |
\\ $\delta_i $ : $\delta_i \Phi = \Phi_{i+1/2} - \Phi_{i-1/2} $ |
16 |
\\ $\overline{~}i$ : $\overline{\Phi}^i = ( \Phi_{i+1} + \Phi_i ) / 2 $ |
\label{eq:delta_i} |
17 |
|
\\ $\overline{~}i$ : $\overline{\Phi}^i = ( \Phi_{i+1/2} + \Phi_{i-1/2} ) / 2 $ |
18 |
|
\label{eq:bar_i} |
19 |
\\ $\delta_x $ : $\delta_x \Phi = \frac{1}{\Delta x} \delta_i \Phi $ |
\\ $\delta_x $ : $\delta_x \Phi = \frac{1}{\Delta x} \delta_i \Phi $ |
20 |
|
\label{eq:delta_x} |
21 |
\\ |
\\ |
22 |
\\ $\overline{\nabla}$ = gradient operator : |
\\ $\overline{\nabla}$ = gradient operator : |
23 |
$\overline{\nabla} \Phi = \{ \delta_x \Phi , \delta_y \Phi \}$ |
$\overline{\nabla} \Phi = \{ \delta_x \Phi , \delta_y \Phi \}$ |
24 |
|
\label{eq:d_grad} |
25 |
\\ $\overline{\nabla} \cdot$ = divergence operator : |
\\ $\overline{\nabla} \cdot$ = divergence operator : |
26 |
$\overline{\nabla}\cdot \vec{\mathrm{f}} = |
$\overline{\nabla}\cdot \vec{\mathrm{f}} = |
27 |
\frac{1}{\cal V} \{ \delta_i A_x \mathrm{f}_x |
\frac{1}{\cal A} \{ \delta_i \Delta y \mathrm{f}_x |
28 |
+ \delta_j A_y \mathrm{f}_y \} $ |
+ \delta_j \Delta x \mathrm{f}_y \} $ |
29 |
\\ $\overline{\nabla}^2 $ = Laplacien operator : |
\label{eq:d_div} |
30 |
|
\\ $\overline{\nabla}^2 $ = Laplacian operator : |
31 |
$ \overline{\nabla}^2 \Phi = |
$ \overline{\nabla}^2 \Phi = |
32 |
\overline{\nabla}\cdot \overline{\nabla}\Phi $ |
\overline{\nabla}\cdot \overline{\nabla}\Phi $ |
33 |
|
\label{eq:d_lap} |