/[MITgcm]/manual/s_algorithm/text/notation.tex
ViewVC logotype

Contents of /manual/s_algorithm/text/notation.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.8 - (show annotations) (download) (as text)
Wed May 4 22:42:48 2011 UTC (14 years, 2 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint01, HEAD
Changes since 1.7: +2 -2 lines
File MIME type: application/x-tex
fix few typo (Thanks to Fabien)

1 % $Header: /u/gcmpack/manual/s_algorithm/text/notation.tex,v 1.7 2006/06/27 19:10:31 jmc Exp $
2 % $Name: $
3
4 \section{Notation}
5
6 Because of the particularity of the vertical direction in stratified fluid
7 context, in this chapter, the vector notations are mostly used
8 for the horizontal component:
9 the horizontal part of a vector is simply written
10 $\vec{\bf v}$ (instead of ${\bf v_h}$ or $\vec{\mathbf{v}}_{h}$ in chaper 1)
11 and a 3.D vector is simply written $\vec{v}$ (instead of $\vec{\mathbf{v}}$
12 in chapter 1).
13
14 The notations we use to describe the discrete formulation
15 of the model are summarized hereafter:\\
16 general notation:
17 \\ $\Delta x, \Delta y, \Delta r$ grid spacing in X,Y,R directions.
18 \\ $A_c,A_w,A_s,A_{\zeta}$ :
19 horizontal area of a grid cell surrounding $\theta,u,v,\zeta$ point.
20 \\ ${\cal V}_u , {\cal V}_v , {\cal V}_w , {\cal V}_\theta$ :
21 Volume of the grid box surrounding $u,v,w,\theta$ point;
22 \\ $i,j,k$ : current index relative to X,Y,R directions;
23 \\basic operator:
24 \\ $\delta_i $ : $\delta_i \Phi = \Phi_{i+1/2} - \Phi_{i-1/2} $
25 \label{eq:delta_i}
26 \\ $~^{-i}$ : $\overline{\Phi}^i = ( \Phi_{i+1/2} + \Phi_{i-1/2} ) / 2 $
27 \label{eq:bar_i}
28 \\ $\delta_x $ : $\delta_x \Phi = \frac{1}{\Delta x} \delta_i \Phi $
29 \label{eq:delta_x}
30 \\
31 \\ $\overline{\nabla}$ = horizontal gradient operator :
32 $\overline{\nabla} \Phi = \{ \delta_x \Phi , \delta_y \Phi \}$
33 \label{eq:d_grad}
34 \\ $\overline{\nabla} \cdot$ = horizontal divergence operator :
35 $\overline{\nabla}\cdot \vec{\mathrm{f}} =
36 \frac{1}{\cal A} \{ \delta_i \Delta y \, \mathrm{f}_x
37 + \delta_j \Delta x \, \mathrm{f}_y \} $
38 \label{eq:d_div}
39 \\ $\overline{\nabla}^2 $ = horizontal Laplacian operator :
40 $ \overline{\nabla}^2 \Phi =
41 \overline{\nabla}\cdot \overline{\nabla}\Phi $
42 \label{eq:d_lap}

  ViewVC Help
Powered by ViewVC 1.1.22