1 |
jmc |
1.7 |
% $Header: /u/gcmpack/manual/part2/notation.tex,v 1.6 2001/10/25 18:36:53 cnh Exp $ |
2 |
adcroft |
1.2 |
% $Name: $ |
3 |
adcroft |
1.1 |
|
4 |
jmc |
1.7 |
\section{Notation} |
5 |
|
|
|
6 |
|
|
Because of the particularity of the vertical direction in stratified fluid |
7 |
|
|
context, in this chapter, the vector notations are mostly used |
8 |
|
|
for the horizontal component: |
9 |
|
|
the horizontal part of a vector is simply written |
10 |
|
|
$\vec{\bf v}$ (instead of ${\bf v_h}$ or $\vec{\mathbf{v}}_{h}$ in chaper 1) |
11 |
|
|
and a 3.D vector is simply written $\vec{v}$ (instead of $\vec{\mathbf{v}}$ |
12 |
|
|
in chapter 1). |
13 |
adcroft |
1.1 |
|
14 |
cnh |
1.6 |
The notations we use to describe the discrete formulation |
15 |
|
|
of the model are summarized hereafter:\\ |
16 |
adcroft |
1.1 |
general notation: |
17 |
|
|
\\ $\Delta x, \Delta y, \Delta r$ grid spacing in X,Y,R directions. |
18 |
jmc |
1.7 |
\\ $A_c,A_w,A_s,A_{\zeta}$ : |
19 |
|
|
horizontal area of a grid cell surrounding $\theta,u,v,\zeta$ point. |
20 |
adcroft |
1.1 |
\\ ${\cal V}_u , {\cal V}_v , {\cal V}_v , {\cal V}_\theta$ : |
21 |
|
|
Volume of the grid box surrounding $u,v,w,\theta$ point; |
22 |
|
|
\\ $i,j,k$ : current index relative to X,Y,R directions; |
23 |
|
|
\\basic operator: |
24 |
adcroft |
1.2 |
\\ $\delta_i $ : $\delta_i \Phi = \Phi_{i+1/2} - \Phi_{i-1/2} $ |
25 |
cnh |
1.5 |
\label{eq:delta_i} |
26 |
jmc |
1.7 |
\\ $~^{-i}$ : $\overline{\Phi}^i = ( \Phi_{i+1/2} + \Phi_{i-1/2} ) / 2 $ |
27 |
cnh |
1.5 |
\label{eq:bar_i} |
28 |
adcroft |
1.1 |
\\ $\delta_x $ : $\delta_x \Phi = \frac{1}{\Delta x} \delta_i \Phi $ |
29 |
cnh |
1.5 |
\label{eq:delta_x} |
30 |
adcroft |
1.1 |
\\ |
31 |
jmc |
1.7 |
\\ $\overline{\nabla}$ = horizontal gradient operator : |
32 |
adcroft |
1.1 |
$\overline{\nabla} \Phi = \{ \delta_x \Phi , \delta_y \Phi \}$ |
33 |
cnh |
1.5 |
\label{eq:d_grad} |
34 |
jmc |
1.7 |
\\ $\overline{\nabla} \cdot$ = horizontal divergence operator : |
35 |
adcroft |
1.1 |
$\overline{\nabla}\cdot \vec{\mathrm{f}} = |
36 |
jmc |
1.7 |
\frac{1}{\cal A} \{ \delta_i \Delta y \, \mathrm{f}_x |
37 |
|
|
+ \delta_j \Delta x \, \mathrm{f}_y \} $ |
38 |
cnh |
1.5 |
\label{eq:d_div} |
39 |
jmc |
1.7 |
\\ $\overline{\nabla}^2 $ = horizontal Laplacian operator : |
40 |
adcroft |
1.1 |
$ \overline{\nabla}^2 \Phi = |
41 |
|
|
\overline{\nabla}\cdot \overline{\nabla}\Phi $ |
42 |
cnh |
1.5 |
\label{eq:d_lap} |