/[MITgcm]/manual/s_algorithm/text/nonlin_visc.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/nonlin_visc.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.1 by edhill, Wed Oct 5 19:52:47 2005 UTC revision 1.2 by baylor, Mon Oct 10 19:00:02 2005 UTC
# Line 203  A_{hLeith}^{1/2}\eta^{-1/6}$.  Thus, the Line 203  A_{hLeith}^{1/2}\eta^{-1/6}$.  Thus, the
203  of enstrophy-dissipation and the resulting eddy viscosity are  of enstrophy-dissipation and the resulting eddy viscosity are
204  \begin{eqnarray}  \begin{eqnarray}
205  L_\eta(A_{hLeith})\propto\pi A_{hLeith}^{1/2}\eta^{-1/6}=\pi A_{hLeith}^{1/3}|\nabla \av \omega_3|^{-1/3}\\  L_\eta(A_{hLeith})\propto\pi A_{hLeith}^{1/2}\eta^{-1/6}=\pi A_{hLeith}^{1/3}|\nabla \av \omega_3|^{-1/3}\\
206  A_{hLeith}={\sf viscC2Leith}|\nabla \av \omega_3|L^3\\  A_{hLeith}=\left(\frac{{\sf viscC2Leith}}{\pi}\right)^3L^3|\nabla \av \omega_3|\\
207  |\nabla\omega_3|\equiv\sqrt{\left[\pd{x}{\ }\left(\pd{x}{\av \tv}-\pd{y}{\av \tu}\right)\right]^2+\left[\pd{y}{\ }\left(\pd{x}{\av \tv}-\pd{y}{\av \tu}\right)\right]^2}  |\nabla\omega_3|\equiv\sqrt{\left[\pd{x}{\ }\left(\pd{x}{\av \tv}-\pd{y}{\av \tu}\right)\right]^2+\left[\pd{y}{\ }\left(\pd{x}{\av \tv}-\pd{y}{\av \tu}\right)\right]^2}
208  \end{eqnarray}  \end{eqnarray}
 NOTE:: may be useful to redefine viscC2Leith for consistency with Smag...  
 \begin{eqnarray}  
 A_{hLeith}=\left(\frac{{\sf viscC2Leith}}{\pi}\right)^3L^3|\nabla \av \omega_3|  
 \end{eqnarray}  
209    
210  \subsubsection{Modified Leith Viscosity}  \subsubsection{Modified Leith Viscosity}
211  The argument above for the Leith viscosity parameterization uses  The argument above for the Leith viscosity parameterization uses

Legend:
Removed from v.1.1  
changed lines
  Added in v.1.2

  ViewVC Help
Powered by ViewVC 1.1.22