203 |
of enstrophy-dissipation and the resulting eddy viscosity are |
of enstrophy-dissipation and the resulting eddy viscosity are |
204 |
\begin{eqnarray} |
\begin{eqnarray} |
205 |
L_\eta(A_{hLeith})\propto\pi A_{hLeith}^{1/2}\eta^{-1/6}=\pi A_{hLeith}^{1/3}|\nabla \av \omega_3|^{-1/3}\\ |
L_\eta(A_{hLeith})\propto\pi A_{hLeith}^{1/2}\eta^{-1/6}=\pi A_{hLeith}^{1/3}|\nabla \av \omega_3|^{-1/3}\\ |
206 |
A_{hLeith}={\sf viscC2Leith}|\nabla \av \omega_3|L^3\\ |
A_{hLeith}=\left(\frac{{\sf viscC2Leith}}{\pi}\right)^3L^3|\nabla \av \omega_3|\\ |
207 |
|\nabla\omega_3|\equiv\sqrt{\left[\pd{x}{\ }\left(\pd{x}{\av \tv}-\pd{y}{\av \tu}\right)\right]^2+\left[\pd{y}{\ }\left(\pd{x}{\av \tv}-\pd{y}{\av \tu}\right)\right]^2} |
|\nabla\omega_3|\equiv\sqrt{\left[\pd{x}{\ }\left(\pd{x}{\av \tv}-\pd{y}{\av \tu}\right)\right]^2+\left[\pd{y}{\ }\left(\pd{x}{\av \tv}-\pd{y}{\av \tu}\right)\right]^2} |
208 |
\end{eqnarray} |
\end{eqnarray} |
|
NOTE:: may be useful to redefine viscC2Leith for consistency with Smag... |
|
|
\begin{eqnarray} |
|
|
A_{hLeith}=\left(\frac{{\sf viscC2Leith}}{\pi}\right)^3L^3|\nabla \av \omega_3| |
|
|
\end{eqnarray} |
|
209 |
|
|
210 |
\subsubsection{Modified Leith Viscosity} |
\subsubsection{Modified Leith Viscosity} |
211 |
The argument above for the Leith viscosity parameterization uses |
The argument above for the Leith viscosity parameterization uses |