/[MITgcm]/manual/s_algorithm/text/nonlin_visc.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/nonlin_visc.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.2 by baylor, Mon Oct 10 19:00:02 2005 UTC revision 1.3 by edhill, Fri Dec 16 06:26:09 2005 UTC
# Line 1  Line 1 
1  %  $Header$  %  $Header$
2  %  $Name$  %  $Name$
3    
 \def\del{{\mathbf \nabla}}  
 \def\av#1{\overline{#1}}  
 \def\pd#1#2{{\frac{\partial{#2}}{\partial#1}}}  
 \def\pds#1#2{{\frac{\partial^2{#2}}{{\partial#1}^2}}}  
 \def\Dt#1{\frac{D{#1}}{Dt}}  
 \def\aDt#1{\frac{\av D{#1}}{\av{Dt}}}  
 \def\d#1{{\,\rm d#1}}  
 \def\Ro{{\rm Ro}}  
 \def\Re{{\rm Re}}  
 \def\Fr{{\rm Fr}}  
 \def\mr{{m_{Ro}}}  
 \def\Mr{{M_{Ro}}}  
 \def\eg{{\emph{e.g.,}\ }}  
 \def\ie{{\emph{i.e.,}\ }}  
 \def\tu{{\tilde u}}  
 \def\tv{{\tilde v}}  
 \def\atu{{\tilde {\av u}}}  
 \def\atv{{\tilde {\av v}}}  
 \def\lesssim{{<\atop\sim}}  
   
   
4  \section{Nonlinear Viscosities for Large Eddy Simulation}  \section{Nonlinear Viscosities for Large Eddy Simulation}
5  \label{sect:nonlin-visc}  \label{sect:nonlin-visc}
6    
# Line 37  largest scales of motion are resolved, a Line 16  largest scales of motion are resolved, a
16  on the large-scale are parameterized.  on the large-scale are parameterized.
17    
18  To formalize this process, we can introduce a filter over the  To formalize this process, we can introduce a filter over the
19  subgridscale L: $u_\alpha\rightarrow \av u_\alpha$ and $L:  subgridscale L: $u_\alpha\rightarrow \BFKav u_\alpha$ and $L:
20  b\rightarrow \av b$.  This filter has some intrinsic length and time  b\rightarrow \BFKav b$.  This filter has some intrinsic length and time
21  scales, and we assume that the flow at that scale can be characterized  scales, and we assume that the flow at that scale can be characterized
22  with a single velocity scale ($V$) and vertical buoyancy gradient  with a single velocity scale ($V$) and vertical buoyancy gradient
23  ($N^2$). The filtered equations of motion in a local Mercator  ($N^2$). The filtered equations of motion in a local Mercator
24  projection about the gridpoint in question (see Appendix for notation  projection about the gridpoint in question (see Appendix for notation
25  and details of approximation) are: \newpage  and details of approximation) are:
26  \begin{eqnarray}  \begin{eqnarray}
27  \aDt \atu- \frac{\atv \sin\theta}{\Ro\sin\theta_0}+\frac{\Mr}{\Ro}\pd{x}{\av\pi}=-\left({\av{\Dt \tu}}-{\aDt \atu}\right)+\frac{\nabla^2{\atu}}{\Re}\label{eq:mercat}\\  \BFKaDt \BFKatu- \frac{\BFKatv
28  \aDt\atv+ \frac{\atu\sin\theta}{\Ro\sin\theta_0}+\frac{\Mr}{\Ro}\pd{y}{\av\pi}=-\left({\av{\Dt \tv}}-{\aDt \atv}\right)+\frac{\nabla^2{\atv}}{\Re}\nonumber\\    \sin\theta}{\BFKRo\sin\theta_0}+\frac{\BFKMr}{\BFKRo}\BFKpd{x}{\BFKav\pi}
29  \aDt {\av w} +\frac{\pd{z}{\av\pi}-\av b}{\Fr^2\lambda^2}=-\left(\av{\Dt w}-\aDt {\av{w}}\right)+\frac{\nabla^2\av w}{\Re}\nonumber\\  & = & -\left({\BFKav{\BFKDt \BFKtu}}-{\BFKaDt \BFKatu}\right)
30  \aDt{\ \av b}+\av w=-\left(\av{\Dt{b}}-\aDt{\ \av b} \right)+\frac{\nabla^2 \av b}{\Pr\Re}\nonumber \\  +\frac{\nabla^2{\BFKatu}}{\BFKRe}\label{eq:mercat}\\
31  \mu^2\left(\pd x\atu  + \pd y\atv \right)+\pd z {\av w} =0\label{eq:cont}  \BFKaDt\BFKatv+\frac{\BFKatu\sin\theta}{\BFKRo\sin\theta_0}
32    +\frac{\BFKMr}{\BFKRo}\BFKpd{y}{\BFKav\pi}
33    & = & -\left({\BFKav{\BFKDt \BFKtv}}-{\BFKaDt \BFKatv}\right)
34    +\frac{\nabla^2{\BFKatv}}{\BFKRe}\nonumber\\
35    \BFKaDt {\BFKav w} +\frac{\BFKpd{z}{\BFKav\pi}-\BFKav b}{\BFKFr^2\lambda^2}
36    & = & -\left(\BFKav{\BFKDt w}-\BFKaDt {\BFKav{w}}\right)
37    +\frac{\nabla^2\BFKav w}{\BFKRe}\nonumber\\
38    \BFKaDt{\ \BFKav b}+\BFKav w & = &
39     -\left(\BFKav{\BFKDt{b}}-\BFKaDt{\ \BFKav b} \right)
40    +\frac{\nabla^2 \BFKav b}{\Pr\BFKRe}\nonumber \\
41    \mu^2\left(\BFKpd x\BFKatu  + \BFKpd y\BFKatv \right)+\BFKpd z {\BFKav w}
42    & = & 0\label{eq:cont}
43  \end{eqnarray}  \end{eqnarray}
44  Tildes denote multiplication by $\cos\theta/\cos\theta_0$ to account  Tildes denote multiplication by $\cos\theta/\cos\theta_0$ to account
45  for converging meridians.  for converging meridians.
# Line 57  for converging meridians. Line 47  for converging meridians.
47  The ocean is usually turbulent, and an operational definition of  The ocean is usually turbulent, and an operational definition of
48  turbulence is that the terms in parentheses (the 'eddy' terms) on the  turbulence is that the terms in parentheses (the 'eddy' terms) on the
49  right of (\ref{eq:mercat}) are of comparable magnitude to the terms on  right of (\ref{eq:mercat}) are of comparable magnitude to the terms on
50  the left-hand side.  The terms proportional to the inverse of \Re,  the left-hand side.  The terms proportional to the inverse of \BFKRe,
51  instead, are many orders of magnitude smaller than all of the other  instead, are many orders of magnitude smaller than all of the other
52  terms in virtually every oceanic application.  terms in virtually every oceanic application.
53    
# Line 67  the right of the preceding equations.  T Line 57  the right of the preceding equations.  T
57  just to increase the viscosity and diffusivity until the viscous and  just to increase the viscosity and diffusivity until the viscous and
58  diffusive scales are resolved.  That is, we approximate:  diffusive scales are resolved.  That is, we approximate:
59  \begin{eqnarray}  \begin{eqnarray}
60  \left({\av{\Dt \tu}}-{\aDt \atu}\right)\approx\frac{\nabla^2_h{\atu}}{\Re_h}+\frac{\pds{z}{\atu}}{\Re_v}\label{eq:eddyvisc},\qquad  \left({\BFKav{\BFKDt \BFKtu}}-{\BFKaDt \BFKatu}\right)
61  \left({\av{\Dt \tv}}-{\aDt \atv}\right)\approx\frac{\nabla^2_h{\atv}}{\Re_h}+\frac{\pds{z}{\atv}}{\Re_v}\nonumber\\  \approx\frac{\nabla^2_h{\BFKatu}}{\BFKRe_h}
62  \left(\av{\Dt w}-\aDt {\av{w}}\right)\approx\frac{\nabla^2_h\av w}{\Re_h}+\frac{\pds{z}{\av w}}{\Re_v}\nonumber,\qquad  +\frac{\BFKpds{z}{\BFKatu}}{\BFKRe_v}\label{eq:eddyvisc}, & &
63  \left(\av{\Dt{b}}-\aDt{\ \av b} \right)\approx\frac{\nabla^2_h \av b}{\Pr\Re_h}+\frac{\pds{z} {\av b}}{\Pr\Re_v}\nonumber  \left({\BFKav{\BFKDt \BFKtv}}-{\BFKaDt \BFKatv}\right)
64    \approx\frac{\nabla^2_h{\BFKatv}}{\BFKRe_h}
65    +\frac{\BFKpds{z}{\BFKatv}}{\BFKRe_v}\nonumber\\
66    \left(\BFKav{\BFKDt w}-\BFKaDt {\BFKav{w}}\right)
67    \approx\frac{\nabla^2_h\BFKav w}{\BFKRe_h}
68    +\frac{\BFKpds{z}{\BFKav w}}{\BFKRe_v}\nonumber, & &
69    \left(\BFKav{\BFKDt{b}}-\BFKaDt{\ \BFKav b} \right)
70    \approx\frac{\nabla^2_h \BFKav b}{\Pr\BFKRe_h}
71    +\frac{\BFKpds{z} {\BFKav b}}{\Pr\BFKRe_v}\nonumber
72  \end{eqnarray}  \end{eqnarray}
73        
74  \subsubsection{Reynolds-Number Limited Eddy Viscosity}    \subsubsection{Reynolds-Number Limited Eddy Viscosity}  
75  One way of ensuring that the gridscale is sufficiently viscous (\ie  One way of ensuring that the gridscale is sufficiently viscous
76  resolved) is to choose the eddy viscosity $A_h$ so that the gridscale  (\textit{ie.}  resolved) is to choose the eddy viscosity $A_h$ so that
77  horizontal Reynolds number based on this eddy viscosity, $\Re_h$, to  the gridscale horizontal Reynolds number based on this eddy viscosity,
78  is O(1).  That is, if the gridscale is to be viscous, then the  $\BFKRe_h$, to is O(1).  That is, if the gridscale is to be viscous,
79  viscosity should be chosen to make the viscous terms as large as the  then the viscosity should be chosen to make the viscous terms as large
80  advective ones.  \citet{Bryanetal75} note that a computational mode is  as the advective ones.  Bryan \textit{et al} \cite{Bryanetal75} notes
81  squelched by using $\Re_h<$2.  that a computational mode is squelched by using $\BFKRe_h<$2.
82    
83  The MITgcm user can select an horizontal eddy viscosity based on  The MITgcm user can select an horizontal eddy viscosity based on
84  $\Re_h$ by two methods.  1) The user may estimate the velocity scale  $\BFKRe_h$ by two methods.  1) The user may estimate the velocity
85  expected from the calculation and grid spacing and set the {\sf  scale expected from the calculation and grid spacing and set the {\sf
86    viscAh} to satisfy $\Re_h<2$.  2) The user may use {\sf    viscAh} to satisfy $\BFKRe_h<2$.  2) The user may use {\sf
87    viscAhReMax}, which ensures that the viscosity is always chosen so    viscAhReMax}, which ensures that the viscosity is always chosen so
88  that $\Re_h<{\sf viscAhReMax}$.  This last option should be used with  that $\BFKRe_h<{\sf viscAhReMax}$.  This last option should be used
89  caution, however, since it effectively implies that viscous terms are  with caution, however, since it effectively implies that viscous terms
90  fixed in magnitude relative to advective terms.  While it may be a  are fixed in magnitude relative to advective terms.  While it may be a
91  useful method for specifying a minimum viscosity with little effort,  useful method for specifying a minimum viscosity with little effort,
92  tests have shown that setting {\sf viscAhReMax}=2  tests \cite{Bryanetal75} have shown that setting {\sf viscAhReMax}=2
93  \citep[per][]{Bryanetal75} often tends to increase the viscosity  often tends to increase the viscosity substantially over other more
94  substantially over other more 'physical' parameterizations below,  'physical' parameterizations below, especially in regions where
95  especially in regions where gradients of velocity are small (and thus  gradients of velocity are small (and thus turbulence may be weak), so
96  turbulence may be weak), so perhaps a more liberal value should be  perhaps a more liberal value should be used, \textit{eg.} {\sf
97  used, \eg {\sf viscAhReMax}=10.    viscAhReMax}=10.
98        
99  While it is certainly necessary that viscosity be active at the  While it is certainly necessary that viscosity be active at the
100  gridscale, the wavelength where dissipation of energy or enstrophy  gridscale, the wavelength where dissipation of energy or enstrophy
# Line 110  meaning. Line 108  meaning.
108  Vertical eddy viscosities are often chosen in a more subjective way,  Vertical eddy viscosities are often chosen in a more subjective way,
109  as model stability is not usually as sensitive to vertical viscosity.  as model stability is not usually as sensitive to vertical viscosity.
110  Usually the 'observed' value from finescale measurements, etc., is  Usually the 'observed' value from finescale measurements, etc., is
111  used (\eg {\sf viscAr}$\approx1\times10^{-4} m^2/s$).  However,  used (\textit{eg.} {\sf viscAr}$\approx1\times10^{-4} m^2/s$).  However,
112  \citet{Smagorinsky93} notes that the Smagorinsky parameterization of  Smagorinsky \cite{Smagorinsky93} notes that the Smagorinsky
113  isotropic turbulence implies a value of the vertical viscosity as well  parameterization of isotropic turbulence implies a value of the
114  as the horizontal viscosity (see below).  vertical viscosity as well as the horizontal viscosity (see below).
115    
116  \subsubsection{Smagorinsky Viscosity}  \subsubsection{Smagorinsky Viscosity}
117  \citet{sm63} and \citet{Smagorinsky93} suggest choosing a viscosity  Some \cite{sm63,Smagorinsky93} suggest choosing a viscosity
118  that \emph{depends on the resolved motions}.  Thus, the overall  that \emph{depends on the resolved motions}.  Thus, the overall
119  viscous operator has a nonlinear dependence on velocity.  Smagorinsky  viscous operator has a nonlinear dependence on velocity.  Smagorinsky
120  chose his form of viscosity by considering Kolmogorov's ideas about  chose his form of viscosity by considering Kolmogorov's ideas about
# Line 147  the energy flux at every grid point, and Line 145  the energy flux at every grid point, and
145  accordingly.  accordingly.
146    
147  Smagorinsky formed the energy equation from the momentum equations by  Smagorinsky formed the energy equation from the momentum equations by
148  dotting them with velocity.  \citep[There are some complications when  dotting them with velocity.  There are some complications when using
149  using the hydrostatic approximation, see][]{Smagorinsky93}.  The  the hydrostatic approximation as described by Smagorinsky
150  positive definite energy dissipation by horizontal viscosity in a  \cite{Smagorinsky93}.  The positive definite energy dissipation by
151  hydrostatic flow is $\nu D^2$, where D is the deformation rate at the  horizontal viscosity in a hydrostatic flow is $\nu D^2$, where D is
152  viscous scale.  According to Kolmogorov's theory, this should be a  the deformation rate at the viscous scale.  According to Kolmogorov's
153  good approximation to the energy flux at any wavenumber  theory, this should be a good approximation to the energy flux at any
154  $\epsilon\approx\nu D^2$.  Kolmogorov and Smagorinsky noted that using  wavenumber $\epsilon\approx\nu D^2$.  Kolmogorov and Smagorinsky noted
155  an eddy viscosity that exceeds the molecular value $\nu$ should ensure  that using an eddy viscosity that exceeds the molecular value $\nu$
156  that the energy flux through viscous scale set by the eddy viscosity  should ensure that the energy flux through viscous scale set by the
157  is the same as it would have been had we resolved all the way to the  eddy viscosity is the same as it would have been had we resolved all
158  true viscous scale.  That is, $\epsilon\approx A_{hSmag} \av D^2$.  If  the way to the true viscous scale.  That is, $\epsilon\approx
159  we use this approximation to estimate the Kolmogorov viscous length,  A_{hSmag} \BFKav D^2$.  If we use this approximation to estimate the
160  then  Kolmogorov viscous length, then
161  \begin{eqnarray}  \begin{equation}
162  L_\epsilon(A_{hSmag})\propto\pi\epsilon^{-1/4}A_{hSmag}^{3/4}\approx\pi(A_{hSmag} \av D^2)^{-1/4}A_{hSmag}^{3/4}=\pi A_{hSmag}^{1/2}\av D^{-1/2}  L_\epsilon(A_{hSmag})\propto\pi\epsilon^{-1/4}A_{hSmag}^{3/4}\approx\pi(A_{hSmag}
163  \end{eqnarray}  \BFKav D^2)^{-1/4}A_{hSmag}^{3/4} = \pi A_{hSmag}^{1/2}\BFKav D^{-1/2}
164    \end{equation}
165  To make $L_\epsilon(A_{hSmag})$ scale with the gridscale, then  To make $L_\epsilon(A_{hSmag})$ scale with the gridscale, then
166  \begin{eqnarray}  \begin{equation}
167  A_{hSmag}=\left(\frac{{\sf viscC2Smag}}{\pi}\right)^2L^2|\av D|  A_{hSmag} = \left(\frac{{\sf viscC2Smag}}{\pi}\right)^2L^2|\BFKav D|
168  \end{eqnarray}  \end{equation}
169  Where the deformation rate appropriate for hydrostatic flows with  Where the deformation rate appropriate for hydrostatic flows with
170  shallow-water scaling is  shallow-water scaling is
171  \begin{eqnarray}  \begin{equation}
172  |\av D|=\sqrt{\left(\pd{x}{\av \tu}-\pd{y}{\av \tv}\right)^2+\left(\pd{y}{\av \tu}+\pd{x}{\av \tv}\right)^2}  |\BFKav D|=\sqrt{\left(\BFKpd{x}{\BFKav \BFKtu}-\BFKpd{y}{\BFKav \BFKtv}\right)^2
173  \end{eqnarray}  +\left(\BFKpd{y}{\BFKav \BFKtu}+\BFKpd{x}{\BFKav \BFKtv}\right)^2}
174    \end{equation}
175  The coefficient {\sf viscC2Smag} is what the MITgcm user sets, and it  The coefficient {\sf viscC2Smag} is what the MITgcm user sets, and it
176  replaces the proportionality in the Kolmogorov length with an  replaces the proportionality in the Kolmogorov length with an
177  equality.  \citet{grha00} suggest values of {\sf viscC2Smag} from 2.2  equality.  Others \cite{grha00} suggest values of {\sf viscC2Smag}
178  to 4 for oceanic problems.  \citet{Smagorinsky93} shows that values  from 2.2 to 4 for oceanic problems.  Smagorinsky \cite{Smagorinsky93}
179  from 0.2 to 0.9 have been used in atmospheric modeling.  shows that values from 0.2 to 0.9 have been used in atmospheric
180    modeling.
181  \citet{Smagorinsky93} shows that a corresponding vertical viscosity  
182  should be used:  Smagorinsky \cite{Smagorinsky93} shows that a corresponding vertical
183  \begin{eqnarray}  viscosity should be used:
184  A_{vSmag}=\left(\frac{{\sf viscC2Smag}}{\pi}\right)^2H^2\sqrt{\left(\pd{z}{\av \tu}\right)^2+\left(\pd{z}{\av \tv}\right)^2}\nonumber  \begin{equation}
185  \end{eqnarray}  A_{vSmag}=\left(\frac{{\sf viscC2Smag}}{\pi}\right)^2H^2
186    \sqrt{\left(\BFKpd{z}{\BFKav \BFKtu}\right)^2
187    +\left(\BFKpd{z}{\BFKav \BFKtv}\right)^2}
188    \end{equation}
189  This vertical viscosity is currently not implemented in the MITgcm  This vertical viscosity is currently not implemented in the MITgcm
190  (although it may be soon).  (although it may be soon).
191    
192  \subsubsection{Leith Viscosity}  \subsubsection{Leith Viscosity}
193  \citet{Leith68,Leith96} notes that 2-d turbulence is quite different  Leith \cite{Leith68,Leith96} notes that 2-d turbulence is quite
194  from 3-d.  In two-dimensional turbulence, energy cascades to larger  different from 3-d.  In two-dimensional turbulence, energy cascades to
195  scales, so there is no concern about resolving the scales of energy  larger scales, so there is no concern about resolving the scales of
196  dissipation.  Instead, another quantity, enstrophy, (which is the  energy dissipation.  Instead, another quantity, enstrophy, (which is
197  vertical component of vorticity squared) is conserved in 2-d  the vertical component of vorticity squared) is conserved in 2-d
198  turbulence, and it cascades to smaller scales where it is dissipated.  turbulence, and it cascades to smaller scales where it is dissipated.
199    
200  Following a similar argument to that above about energy flux, the  Following a similar argument to that above about energy flux, the
201  enstrophy flux is estimated to be equal to the positive-definite  enstrophy flux is estimated to be equal to the positive-definite
202  gridscale dissipation rate of enstrophy $\eta\approx A_{hLeith}  gridscale dissipation rate of enstrophy $\eta\approx A_{hLeith}
203  |\nabla\av \omega_3|^2$.  By dimensional analysis, the  |\nabla\BFKav \omega_3|^2$.  By dimensional analysis, the
204  enstrophy-dissipation scale is $L_\eta(A_{hLeith})\propto\pi  enstrophy-dissipation scale is $L_\eta(A_{hLeith})\propto\pi
205  A_{hLeith}^{1/2}\eta^{-1/6}$.  Thus, the Leith-estimated length scale  A_{hLeith}^{1/2}\eta^{-1/6}$.  Thus, the Leith-estimated length scale
206  of enstrophy-dissipation and the resulting eddy viscosity are  of enstrophy-dissipation and the resulting eddy viscosity are
207  \begin{eqnarray}  \begin{eqnarray}
208  L_\eta(A_{hLeith})\propto\pi A_{hLeith}^{1/2}\eta^{-1/6}=\pi A_{hLeith}^{1/3}|\nabla \av \omega_3|^{-1/3}\\  L_\eta(A_{hLeith})\propto\pi A_{hLeith}^{1/2}\eta^{-1/6}
209  A_{hLeith}=\left(\frac{{\sf viscC2Leith}}{\pi}\right)^3L^3|\nabla \av \omega_3|\\  & = & \pi A_{hLeith}^{1/3}|\nabla \BFKav \omega_3|^{-1/3} \\
210  |\nabla\omega_3|\equiv\sqrt{\left[\pd{x}{\ }\left(\pd{x}{\av \tv}-\pd{y}{\av \tu}\right)\right]^2+\left[\pd{y}{\ }\left(\pd{x}{\av \tv}-\pd{y}{\av \tu}\right)\right]^2}  A_{hLeith} & = &
211    \left(\frac{{\sf viscC2Leith}}{\pi}\right)^3L^3|\nabla \BFKav\omega_3| \\
212    |\nabla\omega_3| & \equiv &
213    \sqrt{\left[\BFKpd{x}{\ }
214        \left(\BFKpd{x}{\BFKav \BFKtv}-\BFKpd{y}{\BFKav
215            \BFKtu}\right)\right]^2
216      +\left[\BFKpd{y}{\ }\left(\BFKpd{x}{\BFKav \BFKtv}
217          -\BFKpd{y}{\BFKav \BFKtu}\right)\right]^2}
218  \end{eqnarray}  \end{eqnarray}
219    
220  \subsubsection{Modified Leith Viscosity}  \subsubsection{Modified Leith Viscosity}
# Line 228  set.  This is a damping specifically tar Line 238  set.  This is a damping specifically tar
238  instabilities near the gridscale.  The combined viscosity has the  instabilities near the gridscale.  The combined viscosity has the
239  form:  form:
240  \begin{eqnarray}  \begin{eqnarray}
241  A_{hLeith}=L^3\sqrt{\left(\frac{{\sf viscC2Leith}}{\pi}\right)^6|\nabla \av \omega_3|^2+\left(\frac{{\sf viscC2LeithD}}{\pi}\right)^6|\nabla \nabla\cdot \av {\tilde u}_h|^2}\nonumber\\  A_{hLeith} & = &
242  |\nabla \nabla\cdot \av {\tilde u}_h|\equiv\sqrt{\left[\pd{x}{\ }\left(\pd{x}{\av \tu}+\pd{y}{\av \tv}\right)\right]^2+\left[\pd{y}{\ }\left(\pd{x}{\av \tu}+\pd{y}{\av \tv}\right)\right]^2}  L^3\sqrt{\left(\frac{{\sf viscC2Leith}}{\pi}\right)^6
243      |\nabla \BFKav \omega_3|^2
244      +\left(\frac{{\sf viscC2LeithD}}{\pi}\right)^6
245      |\nabla \nabla\cdot \BFKav {\tilde u}_h|^2} \\
246    |\nabla \nabla\cdot \BFKav {\tilde u}_h| & \equiv &
247    \sqrt{\left[\BFKpd{x}{\ }\left(\BFKpd{x}{\BFKav \BFKtu}
248          +\BFKpd{y}{\BFKav \BFKtv}\right)\right]^2
249      +\left[\BFKpd{y}{\ }\left(\BFKpd{x}{\BFKav \BFKtu}
250          +\BFKpd{y}{\BFKav \BFKtv}\right)\right]^2}
251  \end{eqnarray}  \end{eqnarray}
252  Whether there is any physical rationale for this correction is unclear  Whether there is any physical rationale for this correction is unclear
253  at the moment, but the numerical consequences are good.  The  at the moment, but the numerical consequences are good.  The
# Line 250  Whatever viscosities are used in the mod Line 268  Whatever viscosities are used in the mod
268  by gridscale and timestep by the Courant--Freidrichs--Lewy (CFL)  by gridscale and timestep by the Courant--Freidrichs--Lewy (CFL)
269  constraint on stability:  constraint on stability:
270  \begin{eqnarray}  \begin{eqnarray}
271  A_h<\frac{L^2}{4\Delta t}\nonumber\\  A_h & < & \frac{L^2}{4\Delta t} \\
272  A_4 \le \frac{L^4}{32\Delta t}\nonumber  A_4 & \le & \frac{L^4}{32\Delta t}
 %%  A_4\lesssim\frac{L^4}{32\Delta t}\nonumber  
273  \end{eqnarray}  \end{eqnarray}
274  The viscosities may be automatically limited to be no greater than  The viscosities may be automatically limited to be no greater than
275  these values in the MITgcm by specifying {\sf viscAhGridMax}$<1$ and  these values in the MITgcm by specifying {\sf viscAhGridMax}$<1$ and
# Line 261  viscosities are provided by {\sf viscAhG Line 278  viscosities are provided by {\sf viscAhG
278    viscA4GridMin}, which if used, should be set to values $\ll 1$. $L$    viscA4GridMin}, which if used, should be set to values $\ll 1$. $L$
279  is roughly the gridscale (see below).  is roughly the gridscale (see below).
280    
281  Following \citet{grha00}, we note that there is a factor of $\Delta  Following \cite{grha00}, we note that there is a factor of $\Delta
282  x^2/8$ difference between the harmonic and biharmonic viscosities.  x^2/8$ difference between the harmonic and biharmonic viscosities.
283  Thus, whenever a non-dimensional harmonic coefficient is used in the  Thus, whenever a non-dimensional harmonic coefficient is used in the
284  MITgcm (\eg {\sf viscAhGridMax}$<1$), the biharmonic equivalent is  MITgcm (\textit{eg.} {\sf viscAhGridMax}$<1$), the biharmonic equivalent is
285  scaled so that the same non-dimensional value can be used (\eg {\sf  scaled so that the same non-dimensional value can be used (\textit{eg.} {\sf
286    viscA4GridMax}$<1$).    viscA4GridMax}$<1$).
287    
288  \subsubsection{Biharmonic Viscosity}  \subsubsection{Biharmonic Viscosity}
289  \citet{ho78} suggested that eddy viscosities ought to be focuses on  \cite{ho78} suggested that eddy viscosities ought to be focuses on
290  the dynamics at the grid scale, as larger motions would be 'resolved'.  the dynamics at the grid scale, as larger motions would be 'resolved'.
291  To enhance the scale selectivity of the viscous operator, he suggested  To enhance the scale selectivity of the viscous operator, he suggested
292  a biharmonic eddy viscosity instead of a harmonic (or Laplacian)  a biharmonic eddy viscosity instead of a harmonic (or Laplacian)
293  viscosity:  viscosity:
294  \begin{eqnarray}  \begin{eqnarray}
295  \left({\av{\Dt \tu}}-{\aDt \atu}\right)\approx\frac{-\nabla^4_h{\atu}}{\Re_4}+\frac{\pds{z}{\atu}}{\Re_v}\label{eq:bieddyvisc},\qquad  \left({\BFKav{\BFKDt \BFKtu}}-{\BFKaDt \BFKatu}\right)\approx
296  \left({\av{\Dt \tv}}-{\aDt \atv}\right)\approx\frac{-\nabla^4_h{\atv}}{\Re_4}+\frac{\pds{z}{\atv}}{\Re_v}\nonumber\\  \frac{-\nabla^4_h{\BFKatu}}{\BFKRe_4}
297  \left(\av{\Dt w}-\aDt {\av{w}}\right)\approx\frac{-\nabla^4_h\av w}{\Re_4}+\frac{\pds{z}{\av w}}{\Re_v}\nonumber,\qquad  +\frac{\BFKpds{z}{\BFKatu}}{\BFKRe_v}\label{eq:bieddyvisc}, & &
298  \left(\av{\Dt{b}}-\aDt{\ \av b} \right)\approx\frac{-\nabla^4_h \av b}{\Pr\Re_4}+\frac{\pds{z} {\av b}}{\Pr\Re_v}\nonumber  \left({\BFKav{\BFKDt \BFKtv}}-{\BFKaDt \BFKatv}\right)\approx
299    \frac{-\nabla^4_h{\BFKatv}}{\BFKRe_4}
300    +\frac{\BFKpds{z}{\BFKatv}}{\BFKRe_v}\nonumber\\
301    \left(\BFKav{\BFKDt w}-\BFKaDt
302      {\BFKav{w}}\right)\approx\frac{-\nabla^4_h\BFKav
303      w}{\BFKRe_4}+\frac{\BFKpds{z}{\BFKav w}}{\BFKRe_v}\nonumber, & &
304    \left(\BFKav{\BFKDt{b}}-\BFKaDt{\ \BFKav b} \right)\approx
305    \frac{-\nabla^4_h \BFKav b}{\Pr\BFKRe_4}
306    +\frac{\BFKpds{z} {\BFKav b}}{\Pr\BFKRe_v}\nonumber
307  \end{eqnarray}  \end{eqnarray}
308  \citet{grha00} propose that if one scales the biharmonic viscosity by  \cite{grha00} propose that if one scales the biharmonic viscosity by
309  stability considerations, then the biharmonic viscous terms will be  stability considerations, then the biharmonic viscous terms will be
310  similarly active to harmonic viscous terms at the gridscale of the  similarly active to harmonic viscous terms at the gridscale of the
311  model, but much less active on larger scale motions.  Similarly, a  model, but much less active on larger scale motions.  Similarly, a
# Line 305  similarly to the harmonic viscosities an Line 330  similarly to the harmonic viscosities an
330  substitution $h\rightarrow 4$.  The MITgcm also supports a biharmonic  substitution $h\rightarrow 4$.  The MITgcm also supports a biharmonic
331  Leith and Smagorinsky viscosities:  Leith and Smagorinsky viscosities:
332  \begin{eqnarray}  \begin{eqnarray}
333  A_{4Smag}=\left(\frac{{\sf viscC4Smag}}{\pi}\right)^2\frac{L^4}{8}|D|\nonumber\\  A_{4Smag} & = &
334  A_{4Leith}=\frac{L^5}{8}\sqrt{\left(\frac{{\sf viscC4Leith}}{\pi}\right)^6|\nabla \av \omega_3|^2+\left(\frac{{\sf viscC4LeithD}}{\pi}\right)^6|\nabla \nabla\cdot \av {\bf \tu}_h|^2}\nonumber  \left(\frac{{\sf viscC4Smag}}{\pi}\right)^2\frac{L^4}{8}|D| \\
335    A_{4Leith} & = &
336    \frac{L^5}{8}\sqrt{\left(\frac{{\sf viscC4Leith}}{\pi}\right)^6
337      |\nabla \BFKav \omega_3|^2
338      +\left(\frac{{\sf viscC4LeithD}}{\pi}\right)^6
339      |\nabla \nabla\cdot \BFKav {\bf \BFKtu}_h|^2}
340  \end{eqnarray}  \end{eqnarray}
341  However, it should be noted that unlike the harmonic forms, the  However, it should be noted that unlike the harmonic forms, the
342  biharmonic scaling does not easily relate to whether  biharmonic scaling does not easily relate to whether
# Line 314  energy-dissipation or enstrophy-dissipat Line 344  energy-dissipation or enstrophy-dissipat
344  similar arguments are used to estimate these scales and scale them to  similar arguments are used to estimate these scales and scale them to
345  the gridscale, the resulting biharmonic viscosities should be:  the gridscale, the resulting biharmonic viscosities should be:
346  \begin{eqnarray}  \begin{eqnarray}
347  A_{4Smag}=\left(\frac{{\sf viscC4Smag}}{\pi}\right)^5L^5|\nabla^2\av {\bf \tu}_h|\nonumber\\  A_{4Smag} & = &
348  A_{4Leith}=L^6\sqrt{\left(\frac{{\sf viscC4Leith}}{\pi}\right)^{12}|\nabla^2 \av \omega_3|^2+\left(\frac{{\sf viscC4LeithD}}{\pi}\right)^{12}|\nabla^2 \nabla\cdot \av {\bf \tu}_h|^2}\nonumber  \left(\frac{{\sf viscC4Smag}}{\pi}\right)^5L^5
349    |\nabla^2\BFKav {\bf \BFKtu}_h| \\
350    A_{4Leith} & = &
351    L^6\sqrt{\left(\frac{{\sf viscC4Leith}}{\pi}\right)^{12}
352      |\nabla^2 \BFKav \omega_3|^2
353      +\left(\frac{{\sf viscC4LeithD}}{\pi}\right)^{12}
354      |\nabla^2 \nabla\cdot \BFKav {\bf \BFKtu}_h|^2}
355  \end{eqnarray}  \end{eqnarray}
356  Thus, the biharmonic scaling suggested by \citet{grha00} implies:  Thus, the biharmonic scaling suggested by \cite{grha00} implies:
357  \begin{eqnarray}  \begin{eqnarray}
358  |D|\propto L|\nabla^2\av {\bf \tu}_h|\\  |D| & \propto &  L|\nabla^2\BFKav {\bf \BFKtu}_h|\\
359  |\nabla \av \omega_3|\propto L|\nabla^2 \av \omega_3|  |\nabla \BFKav \omega_3| & \propto & L|\nabla^2 \BFKav \omega_3|
360  \end{eqnarray}  \end{eqnarray}
361  It is not at all clear that these assumptions ought to hold.  Only the \citet{grha00} forms are currently implemented in the MITgcm.  It is not at all clear that these assumptions ought to hold.  Only the
362    \cite{grha00} forms are currently implemented in the MITgcm.
363    
364  \subsubsection{Selection of Length Scale}  \subsubsection{Selection of Length Scale}
365  Above, the length scale of the grid has been denoted $L$.  However, in  Above, the length scale of the grid has been denoted $L$.  However, in
# Line 338  and occurs naturally in the CFL constrai Line 375  and occurs naturally in the CFL constrai
375    useAreaViscLength} is true, then the square root of the area of the    useAreaViscLength} is true, then the square root of the area of the
376  grid cell is used.  grid cell is used.
377    
 % The Appendices part is started with the command \appendix;  
 % appendix sections are then done as normal sections  
 % \appendix  
   
378  \subsection{Mercator, Nondimensional Equations}  \subsection{Mercator, Nondimensional Equations}
379  The rotating, incompressible, Boussinesq equations of motion  The rotating, incompressible, Boussinesq equations of motion
380  \citep{Gill1982} on a sphere can be written in Mercator projection  \cite{Gill1982} on a sphere can be written in Mercator projection
381  about a latitude $\theta_0$ and geopotential height $z=r-r_0$.  The  about a latitude $\theta_0$ and geopotential height $z=r-r_0$.  The
382  nondimensional form of these equations is:  nondimensional form of these equations is:
383  \begin{eqnarray}  \begin{equation}
384  \Ro\Dt\tu- \frac{\tv \sin\theta}{\sin\theta_0}+\Mr\pd{x}{\pi}+\frac{\lambda\Fr^2\Mr\cos \theta}{\mu\sin\theta_0} w=-\frac{\Fr^2\Mr \tu w}{r/H}+\frac{\Ro{\bf \hat x}\cdot\nabla^2{\bf u}}{\Re}\nonumber\\  \BFKRo\BFKDt\BFKtu- \frac{\BFKtv
385  \Ro\Dt\tv+ \frac{\tu\sin\theta}{\sin\theta_0}+\Mr\pd{y}{\pi}=-\frac{\mu\Ro\tan\theta(\tu^2+\tv^2)}{r/L} -\frac{\Fr^2\Mr \tv w}{r/H}+\frac{\Ro{\bf \hat y}\cdot\nabla^2{\bf u}}{\Re}\nonumber\\    \sin\theta}{\sin\theta_0}+\BFKMr\BFKpd{x}{\pi}
386  \Fr^2\lambda^2\Dt w -b+\pd{z}{\pi}-\frac{\lambda\cot \theta_0 \tu}{\Mr}=\frac{\lambda\mu^2(\tu^2+\tv^2)}{\Mr(r/L)}+\frac{\Fr^2\lambda^2{\bf \hat z}\cdot\nabla^2{\bf u}}{\Re}\nonumber\\  +\frac{\lambda\BFKFr^2\BFKMr\cos \theta}{\mu\sin\theta_0} w
387  \Dt b+w=\frac{\nabla^2 b}{\Pr\Re}\nonumber, \qquad  = -\frac{\BFKFr^2\BFKMr \BFKtu w}{r/H}
388  \mu^2\left(\pd x\tu  + \pd y\tv \right)+\pd z w =0\nonumber  +\frac{\BFKRo{\bf \hat x}\cdot\nabla^2{\bf u}}{\BFKRe}
389    \end{equation}
390    \begin{equation}
391    \BFKRo\BFKDt\BFKtv+
392    \frac{\BFKtu\sin\theta}{\sin\theta_0}+\BFKMr\BFKpd{y}{\pi}
393    = -\frac{\mu\BFKRo\tan\theta(\BFKtu^2+\BFKtv^2)}{r/L}
394    -\frac{\BFKFr^2\BFKMr \BFKtv w}{r/H}
395    +\frac{\BFKRo{\bf \hat y}\cdot\nabla^2{\bf u}}{\BFKRe}
396    \end{equation}
397    \begin{eqnarray}
398    \BFKFr^2\lambda^2\BFKDt w -b+\BFKpd{z}{\pi}
399    -\frac{\lambda\cot \theta_0 \BFKtu}{\BFKMr}
400    & = & \frac{\lambda\mu^2(\BFKtu^2+\BFKtv^2)}{\BFKMr(r/L)}
401    +\frac{\BFKFr^2\lambda^2{\bf \hat z}\cdot\nabla^2{\bf u}}{\BFKRe} \\
402    \BFKDt b+w & = & \frac{\nabla^2 b}{\Pr\BFKRe}\nonumber \\
403    \mu^2\left(\BFKpd x\BFKtu  + \BFKpd y\BFKtv \right)+\BFKpd z w
404    & = & 0
405  \end{eqnarray}  \end{eqnarray}
406  Where  Where
407  \begin{eqnarray}  \begin{equation}
408  \mu\equiv\frac{\cos\theta_0}{\cos\theta},\qquad\tu=\frac{u^*}{V\mu},\qquad\tv=\frac{v^*}{V\mu} , \qquad \Dt\ \equiv \mu^2\left(\tu\pd x\  +\tv \pd y\ \right)+\frac{\Fr^2\Mr}{\Ro} w\pd z \nonumber \\  \mu\equiv\frac{\cos\theta_0}{\cos\theta},\ \ \
409  f_0\equiv2\Omega\sin\theta_0,\qquad x\equiv \frac{r}{L} \phi \cos \theta_0, \qquad y\equiv \frac{r}{L} \int_{\theta_0}^\theta\frac{\cos \theta_0 \d \theta'}{\cos\theta'}, \qquad z\equiv \lambda\frac{r-r_0}{L}\nonumber\\  \BFKtu=\frac{u^*}{V\mu},\ \ \  \BFKtv=\frac{v^*}{V\mu}
410  t^*=t \frac{L}{V},\qquad b^*= b\frac{V f_0\Mr}{\lambda},\qquad \pi^*=\pi V f_0 L\Mr,\qquad w^*=w V \frac{\Fr^2\lambda\Mr}{\Ro}\nonumber\\  \end{equation}
411  \Ro\equiv\frac{V}{f_0 L},\qquad \Mr\equiv \max[1,\Ro], \qquad \Fr\equiv\frac{V}{N \lambda L}, \qquad \Re\equiv\frac{VL}{\nu}, \qquad \Pr\equiv\frac{\nu}{\kappa}\nonumber  %% EH3 :: This is the key bit thats messed up in the next equation
412  \end{eqnarray}  %% \Dt\ \equiv \mu^2\left(\tu\pd x\  +\tv \pd y\ \right)+\frac{\Fr^2\Mr}{\Ro} w\pd z
413    \begin{equation}
414    f_0\equiv2\Omega\sin\theta_0,\ \ \  
415    %,\ \ \  \BFKDt\  \equiv \mu^2\left(\BFKtu\BFKpd x\  
416    %+\BFKtv \BFKpd y\  \right)+\frac{\BFKFr^2\BFKMr}{\BFKRo} w\BFKpd z\  
417    \frac{D}{Dt}  \equiv \mu^2\left(\BFKtu\frac{\partial}{\partial x}  
418    +\BFKtv \frac{\partial}{\partial y}  \right)
419    +\frac{\BFKFr^2\BFKMr}{\BFKRo} w\frac{\partial}{\partial z}
420    \end{equation}
421    \begin{equation}
422    x\equiv \frac{r}{L} \phi \cos \theta_0, \ \ \  
423    y\equiv \frac{r}{L} \int_{\theta_0}^\theta
424    \frac{\cos \theta_0 \BFKd \theta'}{\cos\theta'}, \ \ \  
425    z\equiv \lambda\frac{r-r_0}{L}
426    \end{equation}
427    \begin{equation}
428    t^*=t \frac{L}{V},\ \ \  b^*= b\frac{V f_0\BFKMr}{\lambda}
429    \end{equation}
430    \begin{equation}
431    \pi^*=\pi V f_0 L\BFKMr,\ \ \  
432    w^*=w V \frac{\BFKFr^2\lambda\BFKMr}{\BFKRo}
433    \end{equation}
434    \begin{equation}
435    \BFKRo\equiv\frac{V}{f_0 L},\ \ \  \BFKMr\equiv \max[1,\BFKRo]
436    \end{equation}
437    \begin{equation}
438    \BFKFr\equiv\frac{V}{N \lambda L}, \ \ \  
439    \BFKRe\equiv\frac{VL}{\nu}, \ \ \  
440    \BFKPr\equiv\frac{\nu}{\kappa}
441    \end{equation}
442  Dimensional variables are denoted by an asterisk where necessary.  If  Dimensional variables are denoted by an asterisk where necessary.  If
443  we filter over a grid scale typical for ocean models ($1m<L<100km$,  we filter over a grid scale typical for ocean models ($1m<L<100km$,
444  $0.0001<\lambda<1$, $0.001m/s <V<1 m/s$, $f_0<0.0001 s^{-1}$, $0.01  $0.0001<\lambda<1$, $0.001m/s <V<1 m/s$, $f_0<0.0001 s^{-1}$, $0.01
445  s^{-1}<N<0.0001 s^{-1}$), these equations are very well approximated  s^{-1}<N<0.0001 s^{-1}$), these equations are very well approximated
446  by  by
447  \begin{eqnarray}  \begin{eqnarray}
448  \Ro{\Dt\tu}- \frac{\tv \sin\theta}{\sin\theta_0}+\Mr\pd{x}{\pi}=-\frac{\lambda\Fr^2\Mr\cos \theta}{\mu\sin\theta_0} w+\frac{\Ro\nabla^2{\tu}}{\Re}\nonumber\\  \BFKRo{\BFKDt\BFKtu}- \frac{\BFKtv
449  \Ro\Dt\tv+ \frac{\tu\sin\theta}{\sin\theta_0}+\Mr\pd{y}{\pi}=\frac{\Ro\nabla^2{\tv}}{\Re}\nonumber\\    \sin\theta}{\sin\theta_0}+\BFKMr\BFKpd{x}{\pi}
450  \Fr^2\lambda^2\Dt w -b+\pd{z}{\pi}=\frac{\lambda\cot \theta_0 \tu}{\Mr}\nonumber+\frac{\Fr^2\lambda^2\nabla^2w}{\Re}\\  & =& -\frac{\lambda\BFKFr^2\BFKMr\cos \theta}{\mu\sin\theta_0} w
451  \Dt b+w=\frac{\nabla^2 b}{\Pr\Re}\nonumber, \qquad  +\frac{\BFKRo\nabla^2{\BFKtu}}{\BFKRe} \\
452  \mu^2\left(\pd x\tu  + \pd y\tv \right)+\pd z w =0\nonumber\\  \BFKRo\BFKDt\BFKtv+
453  \nabla^2\approx\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\lambda^2\partial z^2}\right)\nonumber  \frac{\BFKtu\sin\theta}{\sin\theta_0}+\BFKMr\BFKpd{y}{\pi}
454    & = & \frac{\BFKRo\nabla^2{\BFKtv}}{\BFKRe} \\
455    \BFKFr^2\lambda^2\BFKDt w -b+\BFKpd{z}{\pi}
456    & = & \frac{\lambda\cot \theta_0 \BFKtu}{\BFKMr}
457    +\frac{\BFKFr^2\lambda^2\nabla^2w}{\BFKRe} \\
458    \BFKDt b+w & = & \frac{\nabla^2 b}{\Pr\BFKRe} \\
459    \mu^2\left(\BFKpd x\BFKtu + \BFKpd y\BFKtv \right)+\BFKpd z w
460    & = & 0 \\
461    \nabla^2 & \approx & \left(\frac{\partial^2}{\partial x^2}
462      +\frac{\partial^2}{\partial y^2}
463      +\frac{\partial^2}{\lambda^2\partial z^2}\right)
464  \end{eqnarray}  \end{eqnarray}
465  Neglecting the non-frictional terms on the right-hand side is usually  Neglecting the non-frictional terms on the right-hand side is usually
466  called the 'traditional' approximation.  It is appropriate, with  called the 'traditional' approximation.  It is appropriate, with
# Line 380  either large aspect ratio or far from th Line 468  either large aspect ratio or far from th
468  is used here, as it does not affect the form of the eddy stresses  is used here, as it does not affect the form of the eddy stresses
469  which is the main topic.  The frictional terms are preserved in this  which is the main topic.  The frictional terms are preserved in this
470  approximate form for later comparison with eddy stresses.  approximate form for later comparison with eddy stresses.
 % \label{}  
   
 % Bibliographic references with the natbib package:  
 % Parenthetical: \citep{Bai92} produces (Bailyn 1992).  
 % Textual: \citet{Bai95} produces Bailyn et al. (1995).  
 % An affix and part of a reference:  
 %   \citep[e.g.][Ch. 2]{Bar76}  
 %   produces (e.g. Barnes et al. 1976, Ch. 2).  
 %\bibliography{biblio}  
 %\begin{thebibliography}{}  
   
 % \bibitem[Names(Year)]{label} or \bibitem[Names(Year)Long names]{label}.  
 % (\harvarditem{Name}{Year}{label} is also supported.)  
 % Text of bibliographic item  
   
 %\bibitem[]{}  
   
 %\end{thebibliography}  
   
   

Legend:
Removed from v.1.2  
changed lines
  Added in v.1.3

  ViewVC Help
Powered by ViewVC 1.1.22