/[MITgcm]/manual/s_algorithm/text/nonlin_visc.tex
ViewVC logotype

Annotation of /manual/s_algorithm/text/nonlin_visc.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.2 - (hide annotations) (download) (as text)
Mon Oct 10 19:00:02 2005 UTC (19 years, 8 months ago) by baylor
Branch: MAIN
Changes since 1.1: +2 -6 lines
File MIME type: application/x-tex
Changing definition of Leith Coefficient in manual.

1 baylor 1.2 % $Header: /u/gcmpack/manual/part2/nonlin_visc.tex,v 1.1 2005/10/05 19:52:47 edhill Exp $
2 edhill 1.1 % $Name: $
3    
4     \def\del{{\mathbf \nabla}}
5     \def\av#1{\overline{#1}}
6     \def\pd#1#2{{\frac{\partial{#2}}{\partial#1}}}
7     \def\pds#1#2{{\frac{\partial^2{#2}}{{\partial#1}^2}}}
8     \def\Dt#1{\frac{D{#1}}{Dt}}
9     \def\aDt#1{\frac{\av D{#1}}{\av{Dt}}}
10     \def\d#1{{\,\rm d#1}}
11     \def\Ro{{\rm Ro}}
12     \def\Re{{\rm Re}}
13     \def\Fr{{\rm Fr}}
14     \def\mr{{m_{Ro}}}
15     \def\Mr{{M_{Ro}}}
16     \def\eg{{\emph{e.g.,}\ }}
17     \def\ie{{\emph{i.e.,}\ }}
18     \def\tu{{\tilde u}}
19     \def\tv{{\tilde v}}
20     \def\atu{{\tilde {\av u}}}
21     \def\atv{{\tilde {\av v}}}
22     \def\lesssim{{<\atop\sim}}
23    
24    
25     \section{Nonlinear Viscosities for Large Eddy Simulation}
26     \label{sect:nonlin-visc}
27    
28     In Large Eddy Simulations (LES), a turbulent closure needs to be
29     provided that accounts for the effects of subgridscale motions on the
30     large scale. With sufficiently powerful computers, we could resolve
31     the entire flow down to the molecular viscosity scales
32     {($L_{\nu}\approx 1 \rm cm$)}. Current computation allows perhaps
33     four decades to be resolved, so the largest problem computationally
34     feasible would be about 10m. Most oceanographic problems are much
35     larger in scale, so some form of LES is required, where only the
36     largest scales of motion are resolved, and the subgridscale's effects
37     on the large-scale are parameterized.
38    
39     To formalize this process, we can introduce a filter over the
40     subgridscale L: $u_\alpha\rightarrow \av u_\alpha$ and $L:
41     b\rightarrow \av b$. This filter has some intrinsic length and time
42     scales, and we assume that the flow at that scale can be characterized
43     with a single velocity scale ($V$) and vertical buoyancy gradient
44     ($N^2$). The filtered equations of motion in a local Mercator
45     projection about the gridpoint in question (see Appendix for notation
46     and details of approximation) are: \newpage
47     \begin{eqnarray}
48     \aDt \atu- \frac{\atv \sin\theta}{\Ro\sin\theta_0}+\frac{\Mr}{\Ro}\pd{x}{\av\pi}=-\left({\av{\Dt \tu}}-{\aDt \atu}\right)+\frac{\nabla^2{\atu}}{\Re}\label{eq:mercat}\\
49     \aDt\atv+ \frac{\atu\sin\theta}{\Ro\sin\theta_0}+\frac{\Mr}{\Ro}\pd{y}{\av\pi}=-\left({\av{\Dt \tv}}-{\aDt \atv}\right)+\frac{\nabla^2{\atv}}{\Re}\nonumber\\
50     \aDt {\av w} +\frac{\pd{z}{\av\pi}-\av b}{\Fr^2\lambda^2}=-\left(\av{\Dt w}-\aDt {\av{w}}\right)+\frac{\nabla^2\av w}{\Re}\nonumber\\
51     \aDt{\ \av b}+\av w=-\left(\av{\Dt{b}}-\aDt{\ \av b} \right)+\frac{\nabla^2 \av b}{\Pr\Re}\nonumber \\
52     \mu^2\left(\pd x\atu + \pd y\atv \right)+\pd z {\av w} =0\label{eq:cont}
53     \end{eqnarray}
54     Tildes denote multiplication by $\cos\theta/\cos\theta_0$ to account
55     for converging meridians.
56    
57     The ocean is usually turbulent, and an operational definition of
58     turbulence is that the terms in parentheses (the 'eddy' terms) on the
59     right of (\ref{eq:mercat}) are of comparable magnitude to the terms on
60     the left-hand side. The terms proportional to the inverse of \Re,
61     instead, are many orders of magnitude smaller than all of the other
62     terms in virtually every oceanic application.
63    
64     \subsection{Eddy Viscosity}
65     A turbulent closure provides an approximation to the 'eddy' terms on
66     the right of the preceding equations. The simplest form of LES is
67     just to increase the viscosity and diffusivity until the viscous and
68     diffusive scales are resolved. That is, we approximate:
69     \begin{eqnarray}
70     \left({\av{\Dt \tu}}-{\aDt \atu}\right)\approx\frac{\nabla^2_h{\atu}}{\Re_h}+\frac{\pds{z}{\atu}}{\Re_v}\label{eq:eddyvisc},\qquad
71     \left({\av{\Dt \tv}}-{\aDt \atv}\right)\approx\frac{\nabla^2_h{\atv}}{\Re_h}+\frac{\pds{z}{\atv}}{\Re_v}\nonumber\\
72     \left(\av{\Dt w}-\aDt {\av{w}}\right)\approx\frac{\nabla^2_h\av w}{\Re_h}+\frac{\pds{z}{\av w}}{\Re_v}\nonumber,\qquad
73     \left(\av{\Dt{b}}-\aDt{\ \av b} \right)\approx\frac{\nabla^2_h \av b}{\Pr\Re_h}+\frac{\pds{z} {\av b}}{\Pr\Re_v}\nonumber
74     \end{eqnarray}
75    
76     \subsubsection{Reynolds-Number Limited Eddy Viscosity}
77     One way of ensuring that the gridscale is sufficiently viscous (\ie
78     resolved) is to choose the eddy viscosity $A_h$ so that the gridscale
79     horizontal Reynolds number based on this eddy viscosity, $\Re_h$, to
80     is O(1). That is, if the gridscale is to be viscous, then the
81     viscosity should be chosen to make the viscous terms as large as the
82     advective ones. \citet{Bryanetal75} note that a computational mode is
83     squelched by using $\Re_h<$2.
84    
85     The MITgcm user can select an horizontal eddy viscosity based on
86     $\Re_h$ by two methods. 1) The user may estimate the velocity scale
87     expected from the calculation and grid spacing and set the {\sf
88     viscAh} to satisfy $\Re_h<2$. 2) The user may use {\sf
89     viscAhReMax}, which ensures that the viscosity is always chosen so
90     that $\Re_h<{\sf viscAhReMax}$. This last option should be used with
91     caution, however, since it effectively implies that viscous terms are
92     fixed in magnitude relative to advective terms. While it may be a
93     useful method for specifying a minimum viscosity with little effort,
94     tests have shown that setting {\sf viscAhReMax}=2
95     \citep[per][]{Bryanetal75} often tends to increase the viscosity
96     substantially over other more 'physical' parameterizations below,
97     especially in regions where gradients of velocity are small (and thus
98     turbulence may be weak), so perhaps a more liberal value should be
99     used, \eg {\sf viscAhReMax}=10.
100    
101     While it is certainly necessary that viscosity be active at the
102     gridscale, the wavelength where dissipation of energy or enstrophy
103     occurs is not necessarily $L=A_h/U$. In fact, it is by ensuring that
104     the either the dissipation of energy in a 3-d turbulent cascade
105     (Smagorinsky) or dissipation of enstrophy in a 2-d turbulent cascade
106     (Leith) is resolved that these parameterizations derive their physical
107     meaning.
108    
109     \subsubsection{Vertical Eddy Viscosities}
110     Vertical eddy viscosities are often chosen in a more subjective way,
111     as model stability is not usually as sensitive to vertical viscosity.
112     Usually the 'observed' value from finescale measurements, etc., is
113     used (\eg {\sf viscAr}$\approx1\times10^{-4} m^2/s$). However,
114     \citet{Smagorinsky93} notes that the Smagorinsky parameterization of
115     isotropic turbulence implies a value of the vertical viscosity as well
116     as the horizontal viscosity (see below).
117    
118     \subsubsection{Smagorinsky Viscosity}
119     \citet{sm63} and \citet{Smagorinsky93} suggest choosing a viscosity
120     that \emph{depends on the resolved motions}. Thus, the overall
121     viscous operator has a nonlinear dependence on velocity. Smagorinsky
122     chose his form of viscosity by considering Kolmogorov's ideas about
123     the energy spectrum of 3-d isotropic turbulence.
124    
125     Kolmogorov suppposed that is that energy is injected into the flow at
126     large scales (small $k$) and is 'cascaded' or transferred
127     conservatively by nonlinear processes to smaller and smaller scales
128     until it is dissipated near the viscous scale. By setting the energy
129     flux through a particular wavenumber $k$, $\epsilon$, to be a constant
130     in $k$, there is only one combination of viscosity and energy flux
131     that has the units of length, the Kolmogorov wavelength. It is
132     $L_\epsilon(\nu)\propto\pi\epsilon^{-1/4}\nu^{3/4}$ (the $\pi$ stems
133     from conversion from wavenumber to wavelength). To ensure that this
134     viscous scale is resolved in a numerical model, the gridscale should
135     be decreased until $L_\epsilon(\nu)>L$ (so-called Direct Numerical
136     Simulation, or DNS). Alternatively, an eddy viscosity can be used and
137     the corresponding Kolmogorov length can be made larger than the
138     gridscale, $L_\epsilon(A_h)\propto\pi\epsilon^{-1/4}A_h^{3/4}$ (for
139     Large Eddy Simulation or LES).
140    
141     There are two methods of ensuring that the Kolmogorov length is
142     resolved in the MITgcm. 1) The user can estimate the flux of energy
143     through spectral space for a given simulation and adjust grid spacing
144     or {\sf viscAh} to ensure that $L_\epsilon(A_h)>L$. 2) The user may
145     use the approach of Smagorinsky with {\sf viscC2Smag}, which estimates
146     the energy flux at every grid point, and adjusts the viscosity
147     accordingly.
148    
149     Smagorinsky formed the energy equation from the momentum equations by
150     dotting them with velocity. \citep[There are some complications when
151     using the hydrostatic approximation, see][]{Smagorinsky93}. The
152     positive definite energy dissipation by horizontal viscosity in a
153     hydrostatic flow is $\nu D^2$, where D is the deformation rate at the
154     viscous scale. According to Kolmogorov's theory, this should be a
155     good approximation to the energy flux at any wavenumber
156     $\epsilon\approx\nu D^2$. Kolmogorov and Smagorinsky noted that using
157     an eddy viscosity that exceeds the molecular value $\nu$ should ensure
158     that the energy flux through viscous scale set by the eddy viscosity
159     is the same as it would have been had we resolved all the way to the
160     true viscous scale. That is, $\epsilon\approx A_{hSmag} \av D^2$. If
161     we use this approximation to estimate the Kolmogorov viscous length,
162     then
163     \begin{eqnarray}
164     L_\epsilon(A_{hSmag})\propto\pi\epsilon^{-1/4}A_{hSmag}^{3/4}\approx\pi(A_{hSmag} \av D^2)^{-1/4}A_{hSmag}^{3/4}=\pi A_{hSmag}^{1/2}\av D^{-1/2}
165     \end{eqnarray}
166     To make $L_\epsilon(A_{hSmag})$ scale with the gridscale, then
167     \begin{eqnarray}
168     A_{hSmag}=\left(\frac{{\sf viscC2Smag}}{\pi}\right)^2L^2|\av D|
169     \end{eqnarray}
170     Where the deformation rate appropriate for hydrostatic flows with
171     shallow-water scaling is
172     \begin{eqnarray}
173     |\av D|=\sqrt{\left(\pd{x}{\av \tu}-\pd{y}{\av \tv}\right)^2+\left(\pd{y}{\av \tu}+\pd{x}{\av \tv}\right)^2}
174     \end{eqnarray}
175     The coefficient {\sf viscC2Smag} is what the MITgcm user sets, and it
176     replaces the proportionality in the Kolmogorov length with an
177     equality. \citet{grha00} suggest values of {\sf viscC2Smag} from 2.2
178     to 4 for oceanic problems. \citet{Smagorinsky93} shows that values
179     from 0.2 to 0.9 have been used in atmospheric modeling.
180    
181     \citet{Smagorinsky93} shows that a corresponding vertical viscosity
182     should be used:
183     \begin{eqnarray}
184     A_{vSmag}=\left(\frac{{\sf viscC2Smag}}{\pi}\right)^2H^2\sqrt{\left(\pd{z}{\av \tu}\right)^2+\left(\pd{z}{\av \tv}\right)^2}\nonumber
185     \end{eqnarray}
186     This vertical viscosity is currently not implemented in the MITgcm
187     (although it may be soon).
188    
189     \subsubsection{Leith Viscosity}
190     \citet{Leith68,Leith96} notes that 2-d turbulence is quite different
191     from 3-d. In two-dimensional turbulence, energy cascades to larger
192     scales, so there is no concern about resolving the scales of energy
193     dissipation. Instead, another quantity, enstrophy, (which is the
194     vertical component of vorticity squared) is conserved in 2-d
195     turbulence, and it cascades to smaller scales where it is dissipated.
196    
197     Following a similar argument to that above about energy flux, the
198     enstrophy flux is estimated to be equal to the positive-definite
199     gridscale dissipation rate of enstrophy $\eta\approx A_{hLeith}
200     |\nabla\av \omega_3|^2$. By dimensional analysis, the
201     enstrophy-dissipation scale is $L_\eta(A_{hLeith})\propto\pi
202     A_{hLeith}^{1/2}\eta^{-1/6}$. Thus, the Leith-estimated length scale
203     of enstrophy-dissipation and the resulting eddy viscosity are
204     \begin{eqnarray}
205     L_\eta(A_{hLeith})\propto\pi A_{hLeith}^{1/2}\eta^{-1/6}=\pi A_{hLeith}^{1/3}|\nabla \av \omega_3|^{-1/3}\\
206 baylor 1.2 A_{hLeith}=\left(\frac{{\sf viscC2Leith}}{\pi}\right)^3L^3|\nabla \av \omega_3|\\
207 edhill 1.1 |\nabla\omega_3|\equiv\sqrt{\left[\pd{x}{\ }\left(\pd{x}{\av \tv}-\pd{y}{\av \tu}\right)\right]^2+\left[\pd{y}{\ }\left(\pd{x}{\av \tv}-\pd{y}{\av \tu}\right)\right]^2}
208     \end{eqnarray}
209    
210     \subsubsection{Modified Leith Viscosity}
211     The argument above for the Leith viscosity parameterization uses
212     concepts from purely 2-dimensional turbulence, where the horizontal
213     flow field is assumed to be divergenceless. However, oceanic flows
214     are only quasi-two dimensional. While the barotropic flow, or the
215     flow within isopycnal layers may behave nearly as two-dimensional
216     turbulence, there is a possibility that these flows will be divergent.
217     In a high-resolution numerical model, these flows may be substantially
218     divergent near the grid scale, and in fact, numerical instabilities
219     exist which are only horizontally divergent and have little vertical
220     vorticity. This causes a difficulty with the Leith viscosity, which
221     can only responds to buildup of vorticity at the grid scale.
222    
223     The MITgcm offers two options for dealing with this problem. 1) The
224     Smagorinsky viscosity can be used instead of Leith, or in conjunction
225     with Leith--a purely divergent flow does cause an increase in
226     Smagorinsky viscosity. 2) The {\sf viscC2LeithD} parameter can be
227     set. This is a damping specifically targeting purely divergent
228     instabilities near the gridscale. The combined viscosity has the
229     form:
230     \begin{eqnarray}
231     A_{hLeith}=L^3\sqrt{\left(\frac{{\sf viscC2Leith}}{\pi}\right)^6|\nabla \av \omega_3|^2+\left(\frac{{\sf viscC2LeithD}}{\pi}\right)^6|\nabla \nabla\cdot \av {\tilde u}_h|^2}\nonumber\\
232     |\nabla \nabla\cdot \av {\tilde u}_h|\equiv\sqrt{\left[\pd{x}{\ }\left(\pd{x}{\av \tu}+\pd{y}{\av \tv}\right)\right]^2+\left[\pd{y}{\ }\left(\pd{x}{\av \tu}+\pd{y}{\av \tv}\right)\right]^2}
233     \end{eqnarray}
234     Whether there is any physical rationale for this correction is unclear
235     at the moment, but the numerical consequences are good. The
236     divergence in flows with the grid scale larger or comparable to the
237     Rossby radius is typically much smaller than the vorticity, so this
238     adjustment only rarely adjusts the viscosity if ${\sf
239     viscC2LeithD}={\sf viscC2Leith}$. However, the rare regions where
240     this viscosity acts are often the locations for the largest vales of
241     vertical velocity in the domain. Since the CFL condition on vertical
242     velocity is often what sets the maximum timestep, this viscosity may
243     substantially increase the allowable timestep without severely
244     compromising the verity of the simulation. Tests have shown that in
245     some calculations, a timestep three times larger was allowed when
246     ${\sf viscC2LeithD}={\sf viscC2Leith}$.
247    
248     \subsubsection{Courant--Freidrichs--Lewy Constraint on Viscosity}
249     Whatever viscosities are used in the model, the choice is constrained
250     by gridscale and timestep by the Courant--Freidrichs--Lewy (CFL)
251     constraint on stability:
252     \begin{eqnarray}
253     A_h<\frac{L^2}{4\Delta t}\nonumber\\
254     A_4 \le \frac{L^4}{32\Delta t}\nonumber
255     %% A_4\lesssim\frac{L^4}{32\Delta t}\nonumber
256     \end{eqnarray}
257     The viscosities may be automatically limited to be no greater than
258     these values in the MITgcm by specifying {\sf viscAhGridMax}$<1$ and
259     {\sf viscA4GridMax}$<1$. Similarly-scaled minimum values of
260     viscosities are provided by {\sf viscAhGridMin} and {\sf
261     viscA4GridMin}, which if used, should be set to values $\ll 1$. $L$
262     is roughly the gridscale (see below).
263    
264     Following \citet{grha00}, we note that there is a factor of $\Delta
265     x^2/8$ difference between the harmonic and biharmonic viscosities.
266     Thus, whenever a non-dimensional harmonic coefficient is used in the
267     MITgcm (\eg {\sf viscAhGridMax}$<1$), the biharmonic equivalent is
268     scaled so that the same non-dimensional value can be used (\eg {\sf
269     viscA4GridMax}$<1$).
270    
271     \subsubsection{Biharmonic Viscosity}
272     \citet{ho78} suggested that eddy viscosities ought to be focuses on
273     the dynamics at the grid scale, as larger motions would be 'resolved'.
274     To enhance the scale selectivity of the viscous operator, he suggested
275     a biharmonic eddy viscosity instead of a harmonic (or Laplacian)
276     viscosity:
277     \begin{eqnarray}
278     \left({\av{\Dt \tu}}-{\aDt \atu}\right)\approx\frac{-\nabla^4_h{\atu}}{\Re_4}+\frac{\pds{z}{\atu}}{\Re_v}\label{eq:bieddyvisc},\qquad
279     \left({\av{\Dt \tv}}-{\aDt \atv}\right)\approx\frac{-\nabla^4_h{\atv}}{\Re_4}+\frac{\pds{z}{\atv}}{\Re_v}\nonumber\\
280     \left(\av{\Dt w}-\aDt {\av{w}}\right)\approx\frac{-\nabla^4_h\av w}{\Re_4}+\frac{\pds{z}{\av w}}{\Re_v}\nonumber,\qquad
281     \left(\av{\Dt{b}}-\aDt{\ \av b} \right)\approx\frac{-\nabla^4_h \av b}{\Pr\Re_4}+\frac{\pds{z} {\av b}}{\Pr\Re_v}\nonumber
282     \end{eqnarray}
283     \citet{grha00} propose that if one scales the biharmonic viscosity by
284     stability considerations, then the biharmonic viscous terms will be
285     similarly active to harmonic viscous terms at the gridscale of the
286     model, but much less active on larger scale motions. Similarly, a
287     biharmonic diffusivity can be used for less diffusive flows.
288    
289     In practice, biharmonic viscosity and diffusivity allow a less
290     viscous, yet numerically stable, simulation than harmonic viscosity
291     and diffusivity. However, there is no physical rationale for such
292     operators being of leading order, and more boundary conditions must be
293     specified than for the harmonic operators. If one considers the
294     approximations of \ref{eq:eddyvisc} and \ref{eq:bieddyvisc} to be
295     terms in the Taylor series expansions of the eddy terms as functions
296     of the large-scale gradient, then one can argue that both harmonic and
297     biharmonic terms would occur in the series, and the only question is
298     the choice of coefficients. Using biharmonic viscosity alone implies
299     that one zeros the first non-vanishing term in the Taylor series,
300     which is unsupported by any fluid theory or observation.
301    
302     Nonetheless, the MITgcm supports a plethora of biharmonic viscosities
303     and diffusivities, which are controlled with parameters named
304     similarly to the harmonic viscosities and diffusivities with the
305     substitution $h\rightarrow 4$. The MITgcm also supports a biharmonic
306     Leith and Smagorinsky viscosities:
307     \begin{eqnarray}
308     A_{4Smag}=\left(\frac{{\sf viscC4Smag}}{\pi}\right)^2\frac{L^4}{8}|D|\nonumber\\
309     A_{4Leith}=\frac{L^5}{8}\sqrt{\left(\frac{{\sf viscC4Leith}}{\pi}\right)^6|\nabla \av \omega_3|^2+\left(\frac{{\sf viscC4LeithD}}{\pi}\right)^6|\nabla \nabla\cdot \av {\bf \tu}_h|^2}\nonumber
310     \end{eqnarray}
311     However, it should be noted that unlike the harmonic forms, the
312     biharmonic scaling does not easily relate to whether
313     energy-dissipation or enstrophy-dissipation scales are resolved. If
314     similar arguments are used to estimate these scales and scale them to
315     the gridscale, the resulting biharmonic viscosities should be:
316     \begin{eqnarray}
317     A_{4Smag}=\left(\frac{{\sf viscC4Smag}}{\pi}\right)^5L^5|\nabla^2\av {\bf \tu}_h|\nonumber\\
318     A_{4Leith}=L^6\sqrt{\left(\frac{{\sf viscC4Leith}}{\pi}\right)^{12}|\nabla^2 \av \omega_3|^2+\left(\frac{{\sf viscC4LeithD}}{\pi}\right)^{12}|\nabla^2 \nabla\cdot \av {\bf \tu}_h|^2}\nonumber
319     \end{eqnarray}
320     Thus, the biharmonic scaling suggested by \citet{grha00} implies:
321     \begin{eqnarray}
322     |D|\propto L|\nabla^2\av {\bf \tu}_h|\\
323     |\nabla \av \omega_3|\propto L|\nabla^2 \av \omega_3|
324     \end{eqnarray}
325     It is not at all clear that these assumptions ought to hold. Only the \citet{grha00} forms are currently implemented in the MITgcm.
326    
327     \subsubsection{Selection of Length Scale}
328     Above, the length scale of the grid has been denoted $L$. However, in
329     strongly anisotropic grids, $L_x$ and $L_y$ will be quite different in
330     some locations. In that case, the CFL condition suggests that the
331     minimum of $L_x$ and $L_y$ be used. On the other hand, other
332     viscosities which involve whether a particular wavelength is
333     'resolved' might be better suited to use the maximum of $L_x$ and
334     $L_y$. Currently the MITgcm uses {\sf useAreaViscLength} to select
335     between two options. If false, the geometric mean of $L^2_x$ and
336     $L^2_y$ is used for all viscosities, which is closer to the minimum
337     and occurs naturally in the CFL constraint. If {\sf
338     useAreaViscLength} is true, then the square root of the area of the
339     grid cell is used.
340    
341     % The Appendices part is started with the command \appendix;
342     % appendix sections are then done as normal sections
343     % \appendix
344    
345     \subsection{Mercator, Nondimensional Equations}
346     The rotating, incompressible, Boussinesq equations of motion
347     \citep{Gill1982} on a sphere can be written in Mercator projection
348     about a latitude $\theta_0$ and geopotential height $z=r-r_0$. The
349     nondimensional form of these equations is:
350     \begin{eqnarray}
351     \Ro\Dt\tu- \frac{\tv \sin\theta}{\sin\theta_0}+\Mr\pd{x}{\pi}+\frac{\lambda\Fr^2\Mr\cos \theta}{\mu\sin\theta_0} w=-\frac{\Fr^2\Mr \tu w}{r/H}+\frac{\Ro{\bf \hat x}\cdot\nabla^2{\bf u}}{\Re}\nonumber\\
352     \Ro\Dt\tv+ \frac{\tu\sin\theta}{\sin\theta_0}+\Mr\pd{y}{\pi}=-\frac{\mu\Ro\tan\theta(\tu^2+\tv^2)}{r/L} -\frac{\Fr^2\Mr \tv w}{r/H}+\frac{\Ro{\bf \hat y}\cdot\nabla^2{\bf u}}{\Re}\nonumber\\
353     \Fr^2\lambda^2\Dt w -b+\pd{z}{\pi}-\frac{\lambda\cot \theta_0 \tu}{\Mr}=\frac{\lambda\mu^2(\tu^2+\tv^2)}{\Mr(r/L)}+\frac{\Fr^2\lambda^2{\bf \hat z}\cdot\nabla^2{\bf u}}{\Re}\nonumber\\
354     \Dt b+w=\frac{\nabla^2 b}{\Pr\Re}\nonumber, \qquad
355     \mu^2\left(\pd x\tu + \pd y\tv \right)+\pd z w =0\nonumber
356     \end{eqnarray}
357     Where
358     \begin{eqnarray}
359     \mu\equiv\frac{\cos\theta_0}{\cos\theta},\qquad\tu=\frac{u^*}{V\mu},\qquad\tv=\frac{v^*}{V\mu} , \qquad \Dt\ \equiv \mu^2\left(\tu\pd x\ +\tv \pd y\ \right)+\frac{\Fr^2\Mr}{\Ro} w\pd z \nonumber \\
360     f_0\equiv2\Omega\sin\theta_0,\qquad x\equiv \frac{r}{L} \phi \cos \theta_0, \qquad y\equiv \frac{r}{L} \int_{\theta_0}^\theta\frac{\cos \theta_0 \d \theta'}{\cos\theta'}, \qquad z\equiv \lambda\frac{r-r_0}{L}\nonumber\\
361     t^*=t \frac{L}{V},\qquad b^*= b\frac{V f_0\Mr}{\lambda},\qquad \pi^*=\pi V f_0 L\Mr,\qquad w^*=w V \frac{\Fr^2\lambda\Mr}{\Ro}\nonumber\\
362     \Ro\equiv\frac{V}{f_0 L},\qquad \Mr\equiv \max[1,\Ro], \qquad \Fr\equiv\frac{V}{N \lambda L}, \qquad \Re\equiv\frac{VL}{\nu}, \qquad \Pr\equiv\frac{\nu}{\kappa}\nonumber
363     \end{eqnarray}
364     Dimensional variables are denoted by an asterisk where necessary. If
365     we filter over a grid scale typical for ocean models ($1m<L<100km$,
366     $0.0001<\lambda<1$, $0.001m/s <V<1 m/s$, $f_0<0.0001 s^{-1}$, $0.01
367     s^{-1}<N<0.0001 s^{-1}$), these equations are very well approximated
368     by
369     \begin{eqnarray}
370     \Ro{\Dt\tu}- \frac{\tv \sin\theta}{\sin\theta_0}+\Mr\pd{x}{\pi}=-\frac{\lambda\Fr^2\Mr\cos \theta}{\mu\sin\theta_0} w+\frac{\Ro\nabla^2{\tu}}{\Re}\nonumber\\
371     \Ro\Dt\tv+ \frac{\tu\sin\theta}{\sin\theta_0}+\Mr\pd{y}{\pi}=\frac{\Ro\nabla^2{\tv}}{\Re}\nonumber\\
372     \Fr^2\lambda^2\Dt w -b+\pd{z}{\pi}=\frac{\lambda\cot \theta_0 \tu}{\Mr}\nonumber+\frac{\Fr^2\lambda^2\nabla^2w}{\Re}\\
373     \Dt b+w=\frac{\nabla^2 b}{\Pr\Re}\nonumber, \qquad
374     \mu^2\left(\pd x\tu + \pd y\tv \right)+\pd z w =0\nonumber\\
375     \nabla^2\approx\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\lambda^2\partial z^2}\right)\nonumber
376     \end{eqnarray}
377     Neglecting the non-frictional terms on the right-hand side is usually
378     called the 'traditional' approximation. It is appropriate, with
379     either large aspect ratio or far from the tropics. This approximation
380     is used here, as it does not affect the form of the eddy stresses
381     which is the main topic. The frictional terms are preserved in this
382     approximate form for later comparison with eddy stresses.
383     % \label{}
384    
385     % Bibliographic references with the natbib package:
386     % Parenthetical: \citep{Bai92} produces (Bailyn 1992).
387     % Textual: \citet{Bai95} produces Bailyn et al. (1995).
388     % An affix and part of a reference:
389     % \citep[e.g.][Ch. 2]{Bar76}
390     % produces (e.g. Barnes et al. 1976, Ch. 2).
391     %\bibliography{biblio}
392     %\begin{thebibliography}{}
393    
394     % \bibitem[Names(Year)]{label} or \bibitem[Names(Year)Long names]{label}.
395     % (\harvarditem{Name}{Year}{label} is also supported.)
396     % Text of bibliographic item
397    
398     %\bibitem[]{}
399    
400     %\end{thebibliography}
401    
402    

  ViewVC Help
Powered by ViewVC 1.1.22